skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.

Search for: All records

Award ID contains: 1905263

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Spatial confinement of matter in functional nanostructures has propelled these systems to the forefront of nanoscience, both as a playground for exotic physics and quantum phenomena and in multiple applications including plasmonics, optoelectronics, and sensing. In parallel, the emergence of monochromated electron energy loss spectroscopy (EELS) has enabled exploration of local nanoplasmonic functionalities within single nanoparticles and the collective response of nanoparticle assemblies, providing deep insight into associated mechanisms. However, modern synthesis processes for plasmonic nanostructures are often limited in the types of accessible geometry, and materials and are limited to spatial precisions on the order of tens of nm, precluding the direct exploration of critical aspects of the structure‐property relationships. Here, the atomic‐sized probe of the scanning transmission electron microscope is used to perform precise sculpting and design nanoparticle configurations. Using low‐loss EELS, dynamic analyses of the evolution of the plasmonic response are provided. It is shown that within self‐assembled systems of nanoparticles, individual nanoparticles can be selectively removed, reshaped, or patterned with nanometer‐level resolution, effectively modifying the plasmonic response in both space and energy. This process significantly increases the scope for design possibilities and presents opportunities for unique structure development, which are ultimately the key for nanophotonic design.

    more » « less
  2. Abstract

    Design of nanoscale structures with desired optical properties is a key task for nanophotonics. Here, the correlative relationship between local nanoparticle geometries and their plasmonic responses is established using encoder‐decoder neural networks. In theim2specnetwork, the relationship between local particle geometries and local spectra is established via encoding the observed geometries to a small number of latent variables and subsequently decoding into plasmonic spectra; in thespec2imnetwork, the relationship is reversed. Surprisingly, these reduced descriptions allow high‐veracity predictions of local responses based on geometries for fixed compositions and surface chemical states. Analysis of the latent space distributions and the corresponding decoded and closest (in latent space) encoded images yields insight into the generative mechanisms of plasmonic interactions in the nanoparticle arrays. Ultimately, this approach creates a path toward determining configurations that yield the spectrum closest to the desired one, paving the way for stochastic design of nanoplasmonic structures.

    more » « less
  3. Free, publicly-accessible full text available September 13, 2024