Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In both chemical and electrochemical doping of organic semiconductors (OSCs), a counterion, either from the electrolyte or ionized dopant, balances the charge introduced to the OSC. Despite the large influence of this counterion on OSC optical and electronic response, there remains substantial debate on how a fundamental parameter, ion size, impacts these properties. This work resolves much of this debate by accounting for two doping regimes. In the low‐doping regime, the Coulomb binding energies between charge carriers on the OSC and the counterions are significant, and larger counterions lead to decreased Coulomb interactions, more delocalized charge carriers, and higher electrical conductivities. In the high‐doping regime, the Coulomb binding energies become negligible due to the increased dielectric constant of the films and a smoothing of the energy landscape; thereby, the electrical conductivities depend primarily on the extent of morphological disorder in the OSC. Moreover, in regioregular poly(3‐hexylthiophene), rr‐P3HT, smaller counterions lead to greater bipolaron concentrations in the low‐doping regime due to the increased Coulomb interactions. Emphasizing the impact of the counterion size, it is shown that larger counterions can lead to increased thermoelectric power factors for rr‐P3HT.more » « less
-
Abstract Determining the relative energies of transport states in organic semiconductors is critical to understanding the properties of electronic devices and in designing device stacks. Futhermore, defect states are also highly important and can greatly impact material properties and device performance. Recently, energy‐resolved electrochemical impedance spectroscopy (ER‐EIS) is developed to probe both the ionization energy (IE) and electron affinity (EA) as well as sub‐bandgap defect states in organic semiconductors. Herein, ER‐EIS is compared to cyclic voltammetry (CV) and photoemission spectroscopies for extracting IE and EA values, and to photothermal deflection spectroscopy (PDS) for probing defect states in both polymer and molecular organic semiconductors. The results show that ER‐EIS determined IE and EA are in better agreement with photoemission spectroscopy measurements as compared to CV for both polymer and molecular materials. Furthermore, the defect states detected by ER‐EIS agree with sub‐bandgap features detected by PDS. Surprisingly, ER‐EIS measurements of regiorandom and regioregular poly(3‐hexylthiophene) (P3HT) show clear defect bands that occur at significantly different energies. In regioregular P3HT the defect band is near the edge of the occupied states while it is near the edge of the unoccupied states in regiorandom P3HT.more » « less
-
Abstract Organic mixed ionic–electronic conductors (OMIECs) have varied performance requirements across a diverse application space. Chemically doping the OMIEC can be a simple, low‐cost approach for adapting performance metrics. However, complex challenges, such as identifying new dopant materials and elucidating design rules, inhibit its realization. Here, these challenges are approached by introducing a new n‐dopant, tetrabutylammonium hydroxide (TBA‐OH), and identifying a new design consideration underpinning its success. TBA‐OH behaves as both a chemical n‐dopant and morphology additive in donor acceptor co‐polymer naphthodithiophene diimide‐based polymer, which serves as an electron transporting material in organic electrochemical transistors (OECTs). The combined effects enhance OECT transconductance, charge carrier mobility, and volumetric capacitance, representative of the key metrics underpinning all OMIEC applications. Additionally, when the TBA+counterion adopts an “edge‐on” location relative to the polymer backbone, Coulombic interaction between the counterion and polaron is reduced, and polaron delocalization increases. This is the first time such mechanisms are identified in doped‐OECTs and doped‐OMIECs. The work herein therefore takes the first steps toward developing the design guidelines needed to realize chemical doping as a generic strategy for tailoring performance metrics in OECTs and OMIECs.more » « less
-
Abstract Doping plays a critical role in organic electronics, and dopant design has been central in the development of functional and stable doping. In this study, there is departure from conventional molecular dopants and a new class of dopants are reported – aromatic ionic dopants (AIDs). AIDs consist of a pair of aromatic cation and anion that are responsible for molecular doping reaction and charge balancing separately. It is shown that the first AID made from cycloheptatrienyl (tropylium) cation and pentacyanocyclopentadienide anion (PCCp), abbreviated as T‐PCCp, can function as an effectivep‐type dopant to dope polydioxythiophenes. Here, tropylium cation induces the doping reaction while the PCCp anion stabilizes the generated polarons and bipolarons. With T‐PCCp, a highly doped (≈120 S/cm) and stable system is achieved up to 150 °C, an orthogonal (sequential)solution processing resulting from the immiscibility of the dopant and the polymer host, and a high‐resolution direct micropatterning with laser writing resulted from a thermally activated doping process.more » « less