Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract “Evolve and resequence” (E&R) studies combine experimental evolution and whole‐genome sequencing to interrogate the genetics underlying adaptation. Due to ease of handling, E&R work with asexual organisms such as bacteria can employ optimized experimental design, with large experiments and many generations of selection. By contrast, E&R experiments with sexually reproducing organisms are more difficult to implement, and design parameters vary dramatically among studies. Thus, efforts have been made to assess how these differences, such as number of independent replicates, or size of experimental populations, impact inference. We add to this work by investigating the role of time sampling—the number of discrete time points sequence data are collected from evolving populations. Using data from an E&R experiment with outcrossingSaccharomyces cerevisiaein which populations were sequenced 17 times over ~540 generations, we address the following questions: (a) Do more time points improve the ability to identify candidate regions underlying selection? And (b) does high‐resolution sampling provide unique insight into evolutionary processes driving adaptation? We find that while time sampling does not improve the ability to identify candidate regions, high‐resolution sampling does provide valuable opportunities to characterize evolutionary dynamics. Increased time sampling reveals three distinct trajectories for adaptive alleles: one consistent with classic population genetic theory (i.e., models assuming constant selection coefficients), and two where trajectories suggest more context‐dependent responses (i.e., models involving dynamic selection coefficients). We conclude that while time sampling has limited impact on candidate region identification, sampling eight or more time points has clear benefits for studying complex evolutionary dynamics.more » « less
- 
            null (Ed.)Abstract “Synthetic recombinant” populations have emerged as a useful tool for dissecting the genetics of complex traits. They can be used to derive inbred lines for fine QTL mapping, or the populations themselves can be sampled for experimental evolution. In the latter application, investigators generally value maximizing genetic variation in constructed populations. This is because in evolution experiments initiated from such populations, adaptation is primarily fueled by standing genetic variation. Despite this reality, little has been done to systematically evaluate how different methods of constructing synthetic populations shape initial patterns of variation. Here we seek to address this issue by comparing outcomes in synthetic recombinant Saccharomyces cerevisiae populations created using one of two strategies: pairwise crossing of isogenic strains or simple mixing of strains in equal proportion. We also explore the impact of the varying the number of parental strains. We find that more genetic variation is initially present and maintained when population construction includes a round of pairwise crossing. As perhaps expected, we also observe that increasing the number of parental strains typically increases genetic diversity. In summary, we suggest that when constructing populations for use in evolution experiments, simply mixing founder strains in equal proportion may limit the adaptive potential.more » « less
- 
            Abstract Experimental evolution allows the observation of change over time as laboratory populations evolve in response to novel, controlled environments. Microbial evolution experiments take advantage of cryopreservation to archive experimental populations in glycerol media, creating a frozen, living “fossil” record. Prior research with Escherichia coli has shown that cryopreservation conditions can affect cell viability and that allele frequencies across the genome can change in response to a freeze-thaw event. We expand on these observations by characterizing fitness and genomic consequences of multiple freeze-thaw cycles in diploid yeast populations. Our study system is a highly recombinant Saccharomyces cerevisiae population (SGRP-4X) which harbors standing genetic variation that cryopreservation may threaten. We also investigate the four parental isogenic strains crossed to create the SGRP-4X. We measure cell viability over 5 consecutive freeze-thaw cycles; while we find that viability increases over time in the evolved recombinant populations, we observe no such viability improvements in the parental strains. We also collect genome-wide sequence data from experimental populations initially, after one freeze-thaw, and after five freeze-thaw cycles. In the recombinant evolved populations, we find a region of significant allele frequency change on chromosome 15 containing the ALR1 gene. In the parental strains, we find little evidence for new mutations. We conclude that cryopreserving yeast populations with standing genetic variation may have both phenotypic and genomic consequences, though these same cryopreservation practices may have only small impacts on populations with little or no initial variation.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
