Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Microparticles, such as microplastics and microfibers, are ubiquitous in marine food webs. Filter-feeding megafauna may be at extreme risk of exposure to microplastics, but neither the amount nor pathway of microplastic ingestion are well understood. Here, we combine depth-integrated microplastic data from the California Current Ecosystem with high-resolution foraging measurements from 191 tag deployments on blue, fin, and humpback whales to quantify plastic ingestion rates and routes of exposure. We find that baleen whales predominantly feed at depths of 50–250 m, coinciding with the highest measured microplastic concentrations in the pelagic ecosystem. Nearly all (99%) microplastic ingestion is predicted to occur via trophic transfer. We predict that fish-feeding whales are less exposed to microplastic ingestion than krill-feeding whales. Per day, a krill-obligate blue whale may ingest 10 million pieces of microplastic, while a fish-feeding humpback whale likely ingests 200,000 pieces of microplastic. For species struggling to recover from historical whaling alongside other anthropogenic pressures, our findings suggest that the cumulative impacts of multiple stressors require further attention.more » « less
-
Abstract Plastic pollution has pervaded almost every facet of the biosphere, yet we lack an understanding of consumption risk by marine species at the global scale. To address this, we compile data from research documenting plastic debris ingestion by marine fish, totaling 171,774 individuals of 555 species. Overall, 386 marine fish species have ingested plastic debris including 210 species of commercial importance. However, 148 species studied had no records of plastic consumption, suggesting that while this evolutionary trap is widespread, it is not yet universal. Across all studies that accounted for microplastics, the incidence rate of plastic ingested by fish was 26%. Over the last decade this incidence has doubled, increasing by 2.4 ± 0.4% per year. This is driven both by increasing detection of smaller sized particles as a result of improved methodologies, as well as an increase in fish consuming plastic. Further, we investigated the role of geographic, ecological, and behavioral factors in the ingestion of plastic across species. These analyses revealed that the abundance of plastic in surface waters was positively correlated to plastic ingestion. Demersal species are more likely to ingest plastic in shallow waters; in contrast, pelagic species were most likely to consume plastic below the mixed layer. Mobile predatory species had the highest likelihood to ingest plastic; similarly, we found a positive relationship between trophic level and plastic ingestion. We also find evidence that surface ingestion‐deep sea egestion of microplastics by mesopelagic myctophids is likely a key mechanism for the export of microplastics from the surface ocean to the seafloor, a sink for marine debris. These results elucidate the role of ecology and biogeography underlying plastic ingestion by marine fish and point toward species and regions in urgent need of study.more » « less
An official website of the United States government
