- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Havird, Justin C. (2)
-
Weaver, Ryan J. (2)
-
Carrion, Gina (1)
-
Gonzalez, Bryson K. (1)
-
Iverson, Erik N. (1)
-
Maeda, Gerald P. (1)
-
Nix, Rachel (1)
-
Rabinowitz, Samantha (1)
-
Santos, Scott R. (1)
-
Thueson, Kiley (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Mitochondrial (mt) respiration depends on proteins encoded both by the mitochondrial and nuclear genomes. Variation in mt-DNA mutation rates exists across eukaryotes, although the functional consequences of elevated mt mutation rates in some lineages remain underexplored. In the angiosperm genus Silene , closely related, ecologically similar species have either ‘fast' or ‘slow' mt-DNA mutation rates. Here, we investigated the functional consequences of elevated mt-DNA mutation rates on mt respiration profiles of Silene mitochondria. Overall levels of respiration were similar among Species. Fast species had lower respiration efficiency than slow species and relied up to 48% more on nuclear-encoded respiratory enzymes alternative oxidase (AOX) and accessory dehydrogenases (DHex), which participate in stress responses in plants. However, not all fast species showed these trends. Respiratory profiles of some enzymes were correlated, most notably AOX and DHex. We conclude that subtle differences in mt physiology among Silene lineages with dramatically different mt mutation rates may underly similar phenotypes at higher levels of biological organization, betraying the consequences of mt mutations.more » « less
-
Weaver, Ryan J.; Gonzalez, Bryson K.; Santos, Scott R.; Havird, Justin C. (, The Biological Bulletin)
An official website of the United States government
