skip to main content


Search for: All records

Award ID contains: 1906854

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Social robots are emerging as learning companions for children, and research shows that they facilitate the development of interest and learning even through brief interactions. However, little is known about how such technologies might support these goals in authentic environments over long-term periods of use and interaction. We designed a learning companion robot capable of supporting children reading popular-science books by expressing social and informational commentaries. We deployed the robot in homes of 14 families with children aged 10–12 for four weeks during the summer. Our analysis revealed critical factors that affected children’s long-term engagement and adoption of the robot, including external factors such as vacations, family visits, and extracurricular activities; family/parental involvement; and children’s individual interests. We present four in-depth cases that illustrate these factors and demonstrate their impact on children’s reading experiences and discuss the implications of our findings for robot design. 
    more » « less
  2. Research in child-robot interactions suggests that engaging in “care-taking” of a social robot, such as tucking the robot in at night, can strengthen relationships formed between children and robots. In this work, we aim to better understand and explore the design space of caretaking activities with 10 children, aged 8–12 from eight families, involving an exploratory design session followed by a preliminary feasibility testing of robot caretaking activities. The design sessions provided insight into children’s current caretaking tasks, how they would take care of a social robot, and how these new caretaking activities could be integrated into their daily routines. The feasibility study tested two different types of robot caretaking tasks, which we call connection and utility, and measured their short term effects on children’s perceptions of and closeness to the social robot. We discuss the themes and present interaction design guidelines of robot caretaking activities for children. 
    more » « less
  3. Social robots are increasingly introduced into children’s lives as educational and social companions, yet little is known about how these products might best be introduced to their environments. The emergence of the “unboxing” phenomenon in media suggests that introduction is key to technology adoption where initial impressions are made. To better understand this phenomenon toward designing a positive unboxing experience in the context of social robots for children, we conducted three field studies with families of children aged 8 to 13: (1) an exploratory free-play activity (n = 12); (2) a co-design session (n = 11) that informed the development of a prototype box and a curated unboxing experience; and (3) a user study (n = 9) that evaluated children’s experiences. Our findings suggest the unboxing experience of social robots can be improved through the design of a creative aesthetic experience that engages the child socially to guide initial interactions and foster a positive child-robot relationship. 
    more » « less
  4. As social robots become increasingly prevalent in day-to-day environments, they will participate in conversations and appropriately manage the information shared with them. However, little is known about how robots might appropriately discern the sensitivity of information, which has major implications for human-robot trust. As a first step to address a part of this issue, we designed a privacy controller, CONFIDANT, for conversational social robots, capable of using contextual metadata (e.g., sentiment, relationships, topic) from conversations to model privacy boundaries. Afterwards, we conducted two crowdsourced user studies. The first study (n = 174) focused on whether a variety of human-human interaction scenarios were perceived as either private/sensitive or non-private/non-sensitive. The findings from our first study were used to generate association rules. Our second study (n = 95) evaluated the effectiveness and accuracy of the privacy controller in human-robot interaction scenarios by comparing a robot that used our privacy controller against a baseline robot with no privacy controls. Our results demonstrate that the robot with the privacy controller outperforms the robot without the privacy controller in privacy-awareness, trustworthiness, and social-awareness. We conclude that the integration of privacy controllers in authentic human-robot conversations can allow for more trustworthy robots. This initial privacy controller will serve as a foundation for more complex solutions. 
    more » « less
  5. null (Ed.)
    Children’s early numerical knowledge establishes a foundation for later development of mathematics achievement and playing linear number board games is effective in improving basic numeri- cal abilities. Besides the visuo-spatial cues provided by traditional number board games, learning companion robots can integrate multi-sensory information and offer social cues that can support children’s learning experiences. We explored how young children experience sensory feedback (audio and visual) and social expressions from a robot when playing a linear number board game, “RoboMath.” We present the interaction design of the game and our investigation of children’s (n = 19, aged 4) and parents’ experiences under three conditions: (1) visual-only, (2) audio-visual, and (3) audio- visual-social robot interaction. We report our qualitative analysis, including the themes observed from interviews with families on their perceptions of the game and the interaction with the robot, their child’s experiences, and their design recommendations. 
    more » « less
  6. null (Ed.)
    Emotion expression in human-robot interaction has been widely explored, however little is known about how such expressions should be coupled with feelings and opinions expressed by a social robot. We explored how 12 children experienced emotionally expressive social commentaries from a reading companion robot across five interaction styles that differed in their non-verbal emotional expressiveness and opinionated conversational styles (neutral, divergent, or convergent opinions). We found that, while the robot’s opinions and non-verbal emotion expressions affected children’s experiences with the robot, the speech content of the commentaries was the more prominent factor in their experience. Additionally, children differed in their perceptions of social commentary: while some expressed a sense of connection-making with the robot’s self-disclosure commentaries, others felt distracted by them or felt like the robot was off-topic. We recommend designers pay particular attention to the robot’s speech content and consider children’s individual differences in designing emotional and opinionated speech. 
    more » « less
  7. Learning sciences research has demonstrated the importance of social interactions during learning to help promote deep and meaningful understanding through a process of co- constructing knowledge, but homework reading is typically done as an isolated exercise. We have developed a social robot to provide social interactions during reading activities with middle- school children, and in this study report on how interacting with the robot affected the learning experience. Our thematic analysis describes both direct and indirect benefits from reading with the robot. We conclude with theoretical and practical implications of these results. 
    more » « less
  8. Child-robot interactions in educational, developmental, and health domains are widely explored, but little is known about how families perceive the presence of a social robot in their home environment and its participation in day-to-day activities. To close this gap, we conducted a participatory design (PD) study with six families, with children aged 10--12, to examine how families perceive in-home social robots participating in shared activities. Our analysis identified three main themes: (1) the robot can have a range of roles in the home as a companion or as an assistant; (2) family members have different preferences for how they would like to interact with the robot in group or personal interactions; and (3) families have privacy, confidentiality, and ethical concerns regarding a social robot's presence in the home. Based on these themes and existing literature, we provide guidelines for the future interaction design of in-home social robots for children. 
    more » « less