skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1907399

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Dynamically Interactive Visualization (DIVI) is a novel approach for orchestrating interactions within and across static visualizations. DIVI deconstructs Scalable Vector Graphics charts at runtime to infer content and coordinate user input, decoupling interaction from specification logic. This decoupling allows interactions to extend and compose freely across different tools, chart types, and analysis goals. DIVI exploits positional relations of marks to detect chart components such as axes and legends, reconstruct scales and view encodings, and infer data fields. DIVI then enumerates candidate transformations across inferred data to perform linking between views. To support dynamic interaction without prior specification, we introduce a taxonomy that formalizes the space of standard interactions by chart element, interaction type, and input event. We demonstrate DIVI's usefulness for rapid data exploration and analysis through a usability study with 13 participants and a diverse gallery of dynamically interactive visualizations, including single chart, multi-view, and cross-tool configurations. 
    more » « less
  2. Complex animated transitions may be easier to understand when divided into separate, consecutive stages. However, effective staging requires careful attention to both animation semantics and timing parameters. We present Gemini^2, a system for creating staged animations from a sequence of chart keyframes. Given only a start state and an end state, Gemini^2 can automatically recommend intermediate keyframes for designers to consider. The Gemini^2 recommendation engine leverages Gemini, our prior work, and GraphScape to itemize the given complex change into semantic edit operations and to recombine operations into stages with a guided order for clearly conveying the semantics. To evaluate Gemini^2's recommendations, we conducted a human-subject study in which participants ranked recommended animations from both Gemini^2 and Gemini. We find that Gemini^2's animation recommendation ranking is well aligned with subjects' preferences, and Gemini^2 can recommend favorable animations that Gemini cannot support. 
    more » « less
  3. null (Ed.)
  4. Visualization recommender systems attempt to automate design decisions spanning choices of selected data, transformations, and visual encodings. However, across invocations such recommenders may lack the context of prior results, producing unstable outputs that override earlier design choices. To better balance automated suggestions with user intent, we contribute Dziban, a visualization API that supports both ambiguous specification and a novel anchoring mechanism for conveying desired context. Dziban uses the Draco knowledge base to automatically complete partial specifications and suggest appropriate visualizations. In addition, it extends Draco with chart similarity logic, enabling recommendations that also remain perceptually similar to a provided “anchor” chart. Existing APIs for exploratory visualization, such as ggplot2 and Vega-Lite, require fully specified chart definitions. In contrast, Dziban provides a more concise and flexible authoring experience through automated design, while preserving predictability and control through anchored recommendations. 
    more » « less