Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The red hypergiant VY CMa is remarkable for its very visible record of high-mass-loss events observed over the range of wavelengths from the optical and infrared to the submillimeter region with Atacama Large Millimeter/submillimeter Array (ALMA). The SW Clump or SW knots are unique in the ejecta of VY CMa. Except for the central star, they are the brightest sources of dusty infrared emission in its complex ejecta. In this paper we combine the proper motions from the Hubble Space Telescope images, and infrared fluxes from 2 to 12μm with the12CO images from ALMA to determine their ages and mass estimates. The SW knots were ejected more than 200 yr ago with an active period lasting about 30 yr, and with a total mass in the Clump > 2 × 10−2M⊙.more » « lessFree, publicly-accessible full text available March 27, 2026
-
Abstract Molecular observations of four planetary nebulae (PNe), M4-17, Hu 1-1, M1-59, and Na 2, were conducted at 1–3 mm using the Arizona Radio Observatory’s 12 m antenna and Submillimeter Telescope, and the Institut de Radioastronomie Millimétrique 30 m Telescope. Toward M4-17, HNC (J= 3 → 2), CCH (N= 2 → 1,N= 3 → 2), CN (N= 1 → 0,N= 2 → 1), H2CO (JKa,Kc= 21,2→ 11,1,JKa,Kc= 20,2→ 10,1,JKa,Kc= 21,1→ 11,0), CS (J= 3 → 2,J= 5 → 4), and H13CN (J= 2 → 1) were detected. An almost identical set of transitions was identified toward Hu 1-1. Moreover, c–C3H2was detected in Hu 1-1 via three 2 mm lines:JKa,Kc= 31,2→ 22,1,JKa,Kc= 41,4→ 30,3, andJKa,Kc= 32, 2→ 21,1. HNC, CCH, CN, CS, and H13CN were found in M1-59, as well as H2S via itsJKa,Kc= 11,0→ 10,1line—the first detection of this key sulfur species in PNe. In addition, CCH and CN were identified in the 27,000 yr old Na 2. Among these four sources, CN and CCH were the most prevalent molecules (after CO and H2) with fractional abundances, relative to H2, off∼ 0.9–7.5 × 10−7and 0.8–7.5 × 10−7, respectively. CS and HNC have abundances in the rangef∼ 0.5–5 × 10−8, the latter resulting in HCN/HNC ∼ 3 across all three PNe. The unusual species H2CO, c–C3H2, and H2S hadf∼ 3–4 × 10−7, 10−8, and 6 × 10−8. This study suggests that elliptical PNe such as Hu 1-1 can have a diverse molecular composition. The presence of CN, CCH, and HCO+in Na 2, with comparable abundances to younger PNe, demonstrates that molecular content is maintained into the late PN stage.more » « less
-
Abstract Despite model predictions, many planetary nebulae appear to have a relatively rich molecular content. Observational studies of over 30 such objects show the presence of a variety of gas-phase molecules, from simple species such as CN and CS, to more complex organics including H2CO, HC3N, c-C3H2, and CH3CN. Other PNe contain fullerenes; carbonaceous and silicate dust features are also found. Molecular abundances also do not appear to vary with nebular age. Remnant material from the asymptotic giant branch appears to undergo chemical processing in the protoplanetary nebula phase and then is frozen out in planetary nebulae. PN ejecta are thus in part molecular in content and may account for the observation of complex molecules in diffuse clouds.more » « less
-
Abstract Despite its importance in planet formation and biology1, phosphorus has been identified only in the inner 12 kpc of the Galaxy2–19. The study of this element has been hindered in part by unfavourable atomic transitions2,4,20. Phosphorus is thought to be created by neutron capture on29Si and30Si in massive stars20,21, and released into the interstellar medium by Type II supernova explosions2,22. However, models of galactic chemical evolution must arbitrarily increase the supernovae production23to match observed abundances. Here we present the detection of gas-phase phosphorus in the Outer Galaxy through millimetre spectra of PO and PN. Rotational lines of these molecules were observed in the dense cloud WB89-621, located 22.6 kpc from the Galactic Centre24. The abundances of PO and PN in WB89-621 are comparable to values near the Solar System25. Supernovae are not present in the Outer Galaxy26, suggesting another source of phosphorus, such as ‘Galactic Fountains’, where supernova material is redistributed through the halo and circumgalactic medium27. However, fountain-enriched clouds are not found at such large distances. Any extragalactic source, such as the Magellanic Clouds, is unlikely to be metal rich28. Phosphorus instead may be produced by neutron-capture processes in lower mass asymptotic giant branch stars29which are present in the Outer Galaxy. Asymptotic giant branch stars also produce carbon21, flattening the extrapolated metallicity gradient and accounting for the high abundances of C-containing molecules in WB89-621.more » « less
-
Abstract A new interstellar molecule, FeC (X3Δi), has been identified in the circumstellar envelope of the carbon-rich asymptotic giant branch star IRC+10216. FeC is the second iron-bearing species conclusively observed in the interstellar medium, in addition to FeCN, also found in IRC+10216. TheJ= 4 → 3, 5 → 4, and 6 → 5 rotational transitions of this free radical near 160, 201, and 241 GHz, respectively, were detected in the lowest spin–orbit ladder, Ω = 3, using the Submillimeter Telescope of the Arizona Radio Observatory (ARO) for the 1 mm lines and the ARO 12 m at 2 mm. Because the ground state of FeC is inverted, these transitions are the lowest energy lines. The detected features exhibit slight U shapes with LSR velocities nearVLSR≈ −26 km s−1and linewidths of ΔV1/2≈ 30 km s−1, line parameters characteristic of IRC+10216. Radiative transfer modeling of FeC suggests that the molecule has a shell distribution with peak radius near 300R*(∼6″) extending out to ∼500R*(∼10″) and a fractional abundance, relative to H2, off∼ 6 × 10−11. The previous FeCN spectra were also modeled, yielding an abundance off∼ 8 × 10−11in a larger shell situated near 800R*. These distributions suggest that FeC may be the precursor species for FeCN. Unlike cyanides and carbon-chain molecules, diatomic carbides with a metallic element are rare in IRC+10216, with FeC being the first such detection.more » « less
-
Abstract A sensitive (1σrms ≤ 3 mK; 2 MHz resolution) 1 mm spectral survey (214.5–285.5 GHz) of the envelope of the oxygen-rich supergiant star NML Cygni (NML Cyg) has been conducted using the 10 m Submillimeter Telescope of the Arizona Radio Observatory. These data represent the first spectral line survey of NML Cyg and are complementary to a previous 1 mm survey of the envelope of a similar hypergiant, VY Canis Majoris (VY CMa). The complete NML Cyg data set is presented here. In the survey, 104 emission lines were observed, arising from 17 different molecules and 4 unidentified features. Many of the observed features have complex line profiles, arising from asymmetric outflows characteristic of hypergiant stars. While most of the lines in the survey arise from SiO, SO, SO2, and SiS, CO had the strongest emission. Five other C-bearing species are identified in the survey (HCN, CN, HCO+, CS, and HNC), demonstrating an active carbon chemistry despite the O-rich environment. Moreover, NS was observed, but not NO, although favorable transitions of both molecules lie in the surveyed region. Sulfur chemistry appears to be prominent in NML Cyg and plays an important role in the collimated outflows. The refractory species observed, NaCl and AlO, have narrow emission lines, indicating that these molecules do not reach the terminal expansion velocity. NaCl and AlO likely condense into dust grains at r < 50R*. From NaCl, the chlorine isotope ratio was determined to be35Cl/37Cl = 3.85 ± 0.30.more » « less
-
Abstract The millimeter-wave spectrum of the SiP radical (X2Πi) has been measured in the laboratory for the first time using direct-absorption methods. SiP was created by the reaction of phosphorus vapor and SiH4in argon in an AC discharge. Fifteen rotational transitions (J+ 1 ←J) were measured for SiP in the Ω = 3/2 ladder in the frequency range 151–533 GHz, and rotational, lambda doubling, and phosphorus hyperfine constants determined. Based on the laboratory measurements, SiP was detected in the circumstellar shell of IRC+10216, using the Submillimeter Telescope and the 12 m antenna of the Arizona Radio Observatory at 1 mm and 2 mm, respectively. Eight transitions of SiP were searched: four were completely obscured by stronger features, two were uncontaminated (J= 13.5 → 12.5 and 16.5 → 15.5), and two were partially blended with other lines (J= 8.5 → 7.5 and 17.5 → 16.5). The SiP line profiles were broader than expected for IRC+10216, consistent with the hyperfine splitting. From non-LTE radiative transfer modeling, SiP was found to have a shell distribution with a radius ∼300R*, and an abundance, relative to H2, off∼ 2 × 10−9. From additional modeling, abundances of 7 × 10−9and 9 × 10−10were determined for CP and PN, respectively, both located in shells at 550–650R*. SiP may be formed from grain destruction, which liberates both phosphorus and silicon into the gas phase, and then is channeled into other P-bearing molecules such as PN and CP.more » « less
-
The envelopes of Red Supergiants (RSGs) have a unique chemical environment not seen in other types of stars. They foster an oxygen-rich synthesis but are tempered by sporadic and chaotic mass loss, which distorts the envelope and creates complex outflow sub-structures consisting of knots, clumps, and arcs. Near the stellar photosphere, molecules and grains form under approximate LTE conditions, as predicted by chemical models. However, the complicated outflows appear to have distinct chemistries generated by shocks and dust destruction. Various RSG envelopes have been probed for their molecular content, mostly by radio and millimeter observations; however, VY Canis Majoris (VY CMa) and NML Cygni (NML Cyg) display the highest chemical complexity, and also the most complicated envelope structure. Thus far, over 29 different molecules have been identified in the envelopes of RSGs. Some molecules are common for circumstellar gas, including CO, SiO, HCN and H2O, which have abundances of ∼10−6–10−4, relative to H2. More exotic oxides have additionally been discovered, such as AlO, AlOH, PO, TiO2, and VO, with abundances of ∼10−9–10−7. RSG shells support intricate maser emission in OH, H2O and SiO, as well. Studies of isotope ratios in molecules suggest dredge-up at least into the H-burning shell, but further exploration is needed.more » « lessFree, publicly-accessible full text available August 1, 2026
-
The millimeter/submillimeter-wave spectrum of the SiP radical (X 2 Π i ) has been recorded using direct absorption spectroscopy in the frequency range of 151–532 GHz. SiP was synthesized in an AC discharge from the reaction of SiH 4 and gas-phase phosphorus, in argon carrier gas. Both spin–orbit ladders were observed. Fifteen rotational transitions were measured originating in the Ω = 3/2 ladder, and twelve in the Ω = 1/2 substate, each exhibiting lambda doubling and, at lower frequencies, hyperfine interactions from the phosphorus nuclear spin of I = 1/2. The lambda-doublets in the Ω = 1/2 levels appeared to be perturbed at higher J, with the f component deviating from the predicted pattern, likely due to interactions with the nearby excited A 2 Σ + electronic state, where ΔE Π-Σ ∼ 430 cm −1 . The data were analyzed using a Hund’s case a β Hamiltonian and rotational, spin–orbit, lambda-doubling, and hyperfine parameters were determined. A 2 Π/ 2 Σ deperturbation analysis was also performed, considering spin–orbit, spin-electronic, and L-uncoupling interactions. Although SiP is clearly not a hydride, the deperturbed parameters derived suggest that the pure precession hypothesis may be useful in assessing the 2 Π/ 2 Σ interaction. Interpretation of the Fermi contact term, b F , the spin-dipolar constant, c, and the nuclear spin-orbital parameter, a, indicates that the orbital of the unpaired electron is chiefly p π in character. The bond length in the v = 0 level was found to be r 0 = 2.076 Å, suggestive of a double bond between the silicon and phosphorus atoms.more » « less
-
The detection of the fullerenes C60 and C70 in the interstellar medium (ISM) has transformed our understanding of chemical complexity in space. These discoveries also raise the possibility for the presence of even larger molecules in astrophysical environments. Here we report in situ heating of analog silicon carbide (SiC) presolar grains using transmission electron microscopy (TEM). These heating experiments are designed to simulate the temperature conditions occurring in post-AGB stellar envelopes. Our experimental findings reveal that heating the analog SiC grains to the point of decomposition initially yields hemispherical C60-sized nanostructures, with five- and six-membered rings, which transform into multiwalled carbon nanotubes (MWCNTs) if held isothermally >2 min. These MWCNTs are certainly larger than any of the currently observed interstellar fullerene species, both in overall size and number of C atoms. These experimental simulations suggest that such MWCNTs are likely to form in post-AGB circumstellar material, where the structures, along with the smaller fullerenes, are subsequently injected into the ISM.more » « less
An official website of the United States government
