skip to main content

Search for: All records

Award ID contains: 1908549

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Autonomous vehicle-following systems, including Adaptive Cruise Control (ACC) and Cooperative Adaptive Cruise Control (CACC), improve safety, efficiency, and string stability for a vehicle (the ego vehicle) following its leading vehicle. The ego vehicle senses or receives information, such as the position, velocity, acceleration, or even intention, of the leading vehicle and controls its own behavior. However, it has been shown that sensors and wireless channels are vulnerable to security attacks, and attackers can modify data sensed from sensors or received from other vehicles. To address this problem, in this paper, we design three types of stealthy attacks on ACC ormore »CACC inputs, where the stealthy attacks can deceive a rule-based detection approach and impede system properties (collision-freeness and vehicle-following distance). We then develop two deep-learning models, a predictor-based model and an encoder-decoder-based model to detect the attacks, where the two models do not need attacker models for training. The experimental results demonstrate the respective strengths of different models and lead to a methodology for the design of learning-based intrusion detection approaches.« less
  2. We develop a virtual prototyping infrastructure for modeling and simulation of automotive systems. We focus on exercising and exploring use cases involving system-level coordination of vehicular electronics, sensors, and software. In current practice, such use cases can only be explored late in the design when all the relevant hardware components are available. Any design change, e.g., for optimization or security or even functional errors found during the exploration, incurs prohibitive cost at that stage. Our solution is a flexible, configurable prototyping platform that enables the user to seamlessly add new system-level use cases. Unlike other related prototyping environments, the focusmore »of our platform is on communication and coordination among different components, not the computation of individual Electronic Control Units. We report on the use of the platform for implementing several realistic usage scenarios on automotive platforms and exploring the effects of their interaction. In particular, we show how to use the platform to develop real-time in-vehicle communication optimizers for different optimization targets.« less
  3. Connected Autonomous Vehicular (CAV) platoon refers to a group of vehicles that coordinate their movements and operate as a single unit. The vehicle at the head acts as the leader of the platoon and determines the course of the vehicles following it. The follower vehicles utilize Vehicle-to-Vehicle (V2V) communication and automated driving support systems to automatically maintain a small fixed distance between each other. Reliance on V2V communication exposes platoons to several possible malicious attacks which can compromise the safety, stability, and efficiency of the vehicles. We present a novel distributed resiliency architecture, RePLACe for CAV platoon vehicles to defendmore »against adversaries corrupting V2V communication reporting preceding vehicle position. RePLACe is unique in that it can provide real-time defense against a spectrum of communication attacks. RePLACe provides systematic augmentation of a platoon controller architecture with real-time detection and mitigation functionality using machine learning. Unlike computationally intensive cryptographic solutions RePLACe accounts for the limited computation capabilities provided by automotive platforms as well as the real-time requirements of the application. Furthermore, unlike control-theoretic approaches, the same framework works against the broad spectrum of attacks. We also develop a systematic approach for evaluation of resiliency of CAV applications against V2V attacks. We perform extensive experimental evaluation to demonstrate the efficacy of RePLACe.« less
  4. Emergent vehicles will support a variety of connected applications, where a vehicle communicates with other vehicles or with the infrastructure to make a variety of decisions. Cooperative connected applications provide a critical foundational pillar for autonomous driving, and hold the promise of improving road safety, efficiency and environmental sustainability. However, they also induce a large and easily exploitable attack surface: an adversary can manipulate vehicular communications to subvert functionality of participating individual vehicles, cause catastrophic accidents, or bring down the transportation infrastructure. In this paper we outline a potential direction to address this critical problem through a resiliency framework, REDEM,more »based on machine learning. REDEM has several interesting features, including (1) smooth integration with the architecture of the underlying application, (2) ability to handle diverse communication attacks within the same underlying foundation, and (3) real-time detection and mitigation capability. We present the vision of REDEM, identify some key challenges to be addressed in its realization, and discuss the kind of evaluation/analysis necessary for its viability. We also present initial results from one instantiation of REDEM introducing resiliency in Cooperative Adaptive Cruise Control (CACC).« less