Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
It is well known that the monotonicity condition, either in Lasry–Lions sense or in displacement sense, is crucial for the global well-posedness of mean field game master equations, as well as for the uniqueness of mean field equilibria and solutions to mean field game systems. In the literature, the monotonicity conditions are always taken in a fixed direction. In this paper, we propose a new type of monotonicity condition in the opposite direction, which we call the anti-monotonicity condition, and establish the global well-posedness for mean field game master equations with non-separable Hamiltonians. Our anti-monotonicity condition allows our data to violate both the Lasry–Lions monotonicity and the displacement monotonicity conditions.more » « lessFree, publicly-accessible full text available September 9, 2026
-
Nonzero sum games typically have multiple Nash equilibriums (or no equilibrium), and unlike the zero-sum case, they may have different values at different equilibriums. Instead of focusing on the existence of individual equilibriums, we study the set of values over all equilibriums, which we call the set value of the game. The set value is unique by nature and always exists (with possible value [Formula: see text]). Similar to the standard value function in control literature, it enjoys many nice properties, such as regularity, stability, and more importantly, the dynamic programming principle. There are two main features in order to obtain the dynamic programming principle: (i) we must use closed-loop controls (instead of open-loop controls); and (ii) we must allow for path dependent controls, even if the problem is in a state-dependent (Markovian) setting. We shall consider both discrete and continuous time models with finite time horizon. For the latter, we will also provide a duality approach through certain standard PDE (or path-dependent PDE), which is quite efficient for numerically computing the set value of the game.more » « less
-
The theory of Mean Field Game of Controls considers a class of mean field games where the interaction is through the joint distribution of the state and control. It is well known that, for standard mean field games, certain monotonicity conditions are crucial to guarantee the uniqueness of mean field equilibria and then the global wellposedness for master equations. In the literature the monotonicity condition could be the Lasry–Lions monotonicity, the displacement monotonicity, or the anti-monotonicity conditions. In this paper, we investigate these three types of monotonicity conditions for Mean Field Games of Controls and show their propagation along the solutions to the master equations with common noises. In particular, we extend the displacement monotonicity to semi-monotonicity, whose propagation result is new even for standard mean field games. This is the first step towards the global wellposedness theory for master equations of Mean Field Games of Controls.more » « less
An official website of the United States government
