Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present a characterization of the domain wall solutions arising as minimizers of an energy functional obtained in a suitable asymptotic regime of the micromagnetics for infinitely long thin film ferromagnetic strips in which the magnetization is forced to lie in the film plane. For the considered energy, we provide the existence, uniqueness, monotonicity, and symmetry of the magnetization profiles in the form of 180 $$^\circ $$ ∘ and 360 $$^\circ $$ ∘ walls. We also demonstrate how this energy arises as a $$\Gamma $$ Γ -limit of the reduced two-dimensional thin film micromagnetic energy that captures the non-local effects associated with the stray field, and characterize its respective energy minimizers.more » « less
-
This article offers various mathematical contributions to the behavior of thin films. The common thread is to view thin film behavior as the variational limit of a three-dimensional domain with a related behavior when the thickness of that domain vanishes. After a short review in Section 1 of the various regimes that can arise when such an asymptotic process is performed in the classical elastic case, giving rise to various well-known models in plate theory (membrane, bending, Von Karmann, etc…), the other sections address various extensions of those initial results. Section 2 adds brittleness and delamination and investigates the brittle membrane regime. Sections 4 and 5 focus on micromagnetics, rather than elasticity, this once again in the membrane regime and discuss magnetic skyrmions and domain walls, respectively. Finally, Section 3 revisits the classical setting in a non-Euclidean setting induced by the presence of a pre-strain in the model.more » « less
-
We use the continuum micromagnetic framework to derive the formulas for compact skyrmion lifetime due to thermal noise in ultrathin ferromagnetic films with relatively weak interfacial Dzyaloshinskii–Moriya interaction. In the absence of a saddle point connecting the skyrmion solution to the ferromagnetic state, we interpret the skyrmion collapse event as “capture by an absorber” at microscale. This yields an explicit Arrhenius collapse rate with both the barrier height and the prefactor as functions of all the material parameters, as well as the dynamical paths to collapse.more » « less
An official website of the United States government
