skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1908716

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We examine the UV/X-ray properties of 1378 quasars in order to link empirical correlations to theoretical models of the physical mechanisms dominating quasars as a function of mass and accretion rate. The clarity of these correlations is improved when (1) using Civbroad emission line equivalent width (EQW) and blueshift (relative to systemic) values calculated from high signal-to-noise ratio reconstructions of optical/UV spectra and (2) removing quasars expected to be absorbed based on their UV/X-ray spectral slopes. In addition to using the traditional Civparameter space measures of CivEQW and blueshift, we define a “Civ∥ distance” along a best-fit polynomial curve that incorporates information from both Civparameters. We find that the Civ∥ distance is linearly correlated with both the optical-to-X-ray slope,αox, and broad-line HeiiEQW, which are known spectral energy distribution indicators, but does not require X-ray or high spectral resolution UV observations to compute. The Civ∥ distance may be a better indicator of the mass-weighted accretion rate, parameterized byL/LEdd, than the CivEQW or blueshift alone, as those relationships are known to break down at the extrema. Conversely, there is only a weak correlation with the X-ray energy index (Γ), an alternateL/LEddindicator. We find no X-ray or optical trends in the direction perpendicular to the Civdistance that could be used to reveal differences in accretion disk, wind, or corona structure that could be widening the CivEQW–blueshift distribution. A different parameter (such as metallicity) not traced by these data must come into play. 
    more » « less