Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This work addresses the cooperation facilitator (CF) model, in which network nodes coordinate through a rate limited communication device. For multiple-access channel (MAC) encoders, the CF model is known to show significant rate benefits, even when the rate of cooperation is negligible. Specifically, the benefit in MAC sum-rate, as a function of the cooperation rate C_{CF}, sometimes has an infinite slope at C_{CF} = 0 when the CF enables transmitter dependence where none was possible otherwise. This work asks whether cooperation through a CF can yield similar infinite-slope benefits when dependence among MAC transmitters has no benefit or when it can be established without the help of the CF. Specifically, this work studies the CF model when applied to relay nodes of a single-source, single-terminal, diamond network comprising a broadcast channel followed by a MAC. In the relay channel with orthogonal receiver components, careful generalization of the partial-decode-forward/compress-forward lower bound to the CF model yields sufficient conditions for an infinite-slope benefit. Additional results include derivation of a family of diamond networks for which the infinite-slope rate-benefit derives directly from the properties of the corresponding MAC studied in isolation.more » « less
-
null (Ed.)The second-order converse bound of multiple access channels is an intriguing problem in information theory. In this work, in the setting of the two-user discrete memoryless multiple access channel (DM-MAC) under the maximal error probability criterion, we investigate the gap between the best achievable rates and the asymptotic capacity region. With “wringing techniques” and meta-converse arguments, we show that gap at blocklength n is upper bounded by O(1/√n) .more » « less
-
null (Ed.)The work at hand presents a finite-blocklength analysis of the multiple access channel (MAC) sum-rate under the cooperation facilitator (CF) model. The CF model, in which independent encoders coordinate through an intermediary node, is known to show significant rate benefits, even when the rate of cooperation is limited. We continue this line of study for cooperation rates which are sub-linear in the blocklength n. Roughly speaking, our results show that if the facilitator transmits log K bits, then there is a sum-rate benefit of order √log K/n compared to the best-known achievable rate. This result extends across a wide range of K: even a single bit of cooperation is shown to provide a sum-rate benefit of order 1/√n.more » « less