skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1909073

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Modular design is a key challenge for enabling large-scale reuse of hardware modules. Unlike software, however, hardware designs correspond to physical circuits and inherit constraints from them. Timing constraints—which cycle a signal arrives, when an input is read—and structural constraints—how often a multiplier accepts new inputs—are fundamental to hardware interfaces. Existing hardware design languages do not provide a way to encode these constraints; a user must read documentation, build scripts, or in the worst case, a module’s implementation to understand how to use it. We present Filament, a language for modular hardware design that supports the specification and enforcement of timing and structural constraints for statically scheduled pipelines. Filament usestimeline types, which describe the intervals of clock-cycle time when a given signal is available or required. Filament enablessafe compositionof hardware modules, ensures that the resulting designs are correctly pipelined, and predictably lowers them to efficient hardware. 
    more » « less
  2. Deep learning for computer vision depends on lossy image compression: it reduces the storage required for training and test data and lowers transfer costs in deployment. Mainstream datasets and imaging pipelines all rely on standard JPEG compression. In JPEG, the degree of quantization of frequency coefficients controls the lossiness: an 8x8 quantization table (Q-table) decides both the quality of the encoded image and the compression ratio. While a long history of work has sought better Q-tables, existing work either seeks to minimize image distortion or to optimize for models of the human visual system. This work asks whether JPEG Q-tables exist that are “better” for specific vision networks and can offer better quality–size trade-offs than ones designed for human perception or minimal distortion. We reconstruct an ImageNet test set with higher resolution to explore the effect of JPEG compression under novel Q-tables. We attempt several approaches to tune a Q-table for a vision task. We find that a simple sorted random sampling method can exceed the performance of the standard JPEG Q-table. We also use hyper-parameter tuning techniques including bounded random search, Bayesian optimization, and composite heuristic optimization methods. The new Q-tables we obtained can improve the compression rate by 10% to 200% when the accuracy is fixed, or improve accuracy up to 2% at the same compression rate. 
    more » « less