skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1909247

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The gravitational three-body problem is a fundamental problem in physics and has significant applications to astronomy. Three-body configurations are often considered stable as long the system is hierarchical; that is, the two orbital distances are well-separated. However, instability, which is often associated with significant energy exchange between orbits, takes time to develop. Assuming two massive objects in a circular orbit and a test particle in an eccentric orbit, we develop an analytical formula estimating the time it takes for the test particle’s orbital energy to change by an order of itself. We show its consistency with results from N -body simulations. For eccentric orbits in particular, the instability is primarily driven not by close encounters of the test particle with one of the other bodies, but by the fundamental susceptibility of eccentric orbits to exchange energy at their periapsis. Motivated by recent suggestions that the galactic center may host an intermediate-mass black hole (IMBH) as a companion to the massive black hole Sgr A*, we use our timescale to explore the parameter space that could harbor an IMBH for the lifetime of the S-cluster of stars surrounding Sgr A*. Furthermore, we show that the orbit of an S-star can be stable for long timescales in the presence of other orbital crossing stars, thus suggesting that the S-cluster may be stable for the lifetimes of its member stars. 
    more » « less