skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1909335

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Guruswami, Venkatesan (Ed.)
    This paper considers elections in which voters choose one candidate each, independently according to known probability distributions. A candidate receiving a strict majority (absolute or relative, depending on the version) wins. After the voters have made their choices, each vote can be inspected to determine which candidate received that vote. The time (or cost) to inspect each of the votes is known in advance. The task is to (possibly adaptively) determine the order in which to inspect the votes, so as to minimize the expected time to determine which candidate has won the election. We design polynomial-time constant-factor approximation algorithms for both the absolute-majority and the relative-majority version. Both algorithms are based on a two-phase approach. In the first phase, the algorithms reduce the number of relevant candidates to O(1), and in the second phase they utilize techniques from the literature on stochastic function evaluation to handle the remaining candidates. In the case of absolute majority, we show that the same can be achieved with only two rounds of adaptivity. 
    more » « less
  2. Chalermsook, P.; Laekhanukit, B. (Ed.)
  3. We consider a large family of problems in which an ordering (or, more precisely, a chain of subsets) of a finite set must be chosen to minimize some weighted sum of costs. This family includes variations of min sum set cover, several scheduling and search problems, and problems in Boolean function evaluation. We define a new problem, called the min sum ordering problem (MSOP), which generalizes all these problems using a cost and a weight function defined on subsets of a finite set. Assuming a polynomial time α-approximation algorithm for the problem of finding a subset whose ratio of weight to cost is maximal, we show that under very minimal assumptions, there is a polynomial time [Formula: see text]-approximation algorithm for MSOP. This approximation result generalizes a proof technique used for several distinct problems in the literature. We apply this to obtain a number of new approximation results. Summary of Contribution: This paper provides a general framework for min sum ordering problems. Within the realm of theoretical computer science, these problems include min sum set cover and its generalizations, as well as problems in Boolean function evaluation. On the operations research side, they include problems in search theory and scheduling. We present and analyze a very general algorithm for these problems, unifying several previous results on various min sum ordering problems and resulting in new constant factor guarantees for others. 
    more » « less
  4. Bae, Sang Won; Park, Heejin (Ed.)
    We consider the problem of solving the Min-Sum Submodular Cover problem using local search. The Min-Sum Submodular Cover problem generalizes the NP-complete Min-Sum Set Cover problem, replacing the input set cover instance with a monotone submodular set function. A simple greedy algorithm achieves an approximation factor of 4, which is tight unless P=NP [Streeter and Golovin, NeurIPS, 2008]. We complement the greedy algorithm with analysis of a local search algorithm. Building on work of Munagala et al. [ICDT, 2005], we show that, using simple initialization, a straightforward local search algorithm achieves a (4+ε)-approximate solution in time O(n³log(n/ε)), provided that the monotone submodular set function is also second-order supermodular. Second-order supermodularity has been shown to hold for a number of submodular functions of practical interest, including functions associated with set cover, matching, and facility location. We present experiments on two special cases of Min-Sum Submodular Cover and find that the local search algorithm can outperform the greedy algorithm on small data sets. 
    more » « less
  5. null (Ed.)
    We show that the Adaptive Greedy algorithm of Golovin and Krause achieves an approximation bound of (ln(Q/η)+1) for Stochastic Submodular Cover: here Q is the “goal value” and η is the minimum gap between Q and any attainable utility value Q' 
    more » « less