Infrared observations of stellar orbits about Sgr A* probe the mass distribution in the inner parsec of the Galaxy and provide definitive evidence for the existence of a massive black hole. However, the infrared astrometry is relative and is tied to the radio emission from Sgr A* using stellar SiO masers that coincide with infrared-bright stars. To support and improve this two-step astrometry, we present new astrometric observations of 15 stellar SiO masers within 2 pc of Sgr A*. Combined with legacy observations spanning 25.8 yr, we reanalyze the relative offsets of these masers from Sgr A* and measure positions and proper motions that are significantly improved compared to the previously published reference frame. Maser positions are corrected for epoch-specific differential aberration, precession, nutation, and solar gravitational deflection. Omitting the supergiant IRS 7, the mean position uncertainties are 0.46 mas and 0.84 mas in R.A. and decl., and the mean proper motion uncertainties are 0.07 mas yr−1and 0.12 mas yr−1, respectively. At a distance of 8.2 kpc, these correspond to position uncertainties of 3.7 and 6.9 au and proper motion uncertainties of 2.7 and 4.6 km s−1. The reference frame stability, the uncertainty in the variance-weighted mean proper motion of the maser ensemble, is 8
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract μ as yr−1(0.30 km s−1) in R.A. and 11μ as yr−1(0.44 km s−1) in decl., which represents a 2.3-fold improvement over previous work and a new benchmark for the maser-based reference frame. -
Abstract The astrometric precision and accuracy of an imaging camera is often limited by geometric optical distortions. These must be calibrated and removed to measure precise proper motions, orbits, and gravitationally lensed positions of interesting astronomical objects. Here, we derive a distortion solution for the OSIRIS Imager fed by the Keck I adaptive optics system at the W. M. Keck Observatory. The distortion solution was derived from images of the dense globular clusters M15 and M92 taken with OSIRIS in 2020 and 2021. The set of 403 starlists, each containing ∼1000 stars, were compared to reference Hubble catalogs to measure the distortion-induced positional differences. OSIRIS was opened and optically realigned in 2020 November and the distortion solutions before and after the opening show slight differences at the ∼20 mas level. We find that the OSIRIS distortion closely matches the designed optical model: large, reaching 20 pixels at the corners, but mostly low order, with the majority of the distortion in the 2nd-order mode. After applying the new distortion correction, we find a median residual of [
x, y ] = [0.052, 0.056] pixels ([0.51, 0.56] mas) for the 2020 solution, and [x, y ] = [0.081, 0.071] pixels ([0.80, 0.71] mas) for the 2021 solution. Comparison between NIRC2 images and OSIRIS images of the Galactic center show that the mean astrometric difference between the two instruments reduces from 10.7 standard deviations to 1.7 standard deviations when the OSIRIS distortion solution is applied. The distortion model is included in the Keck AO Imaging data-reduction pipeline and is available for use on OSIRIS data. -
Abstract Sgr A* is the variable electromagnetic source associated with accretion onto the Galactic center supermassive black hole. While the near-infrared (NIR) variability of Sgr A* was shown to be consistent over two decades, unprecedented activity in 2019 challenges existing statistical models. We investigate the origin of this activity by recalibrating and reanalyzing all of our Keck Observatory Sgr A* imaging observations from 2005–2022. We present light curves from 69 observation epochs using the NIRC2 imager at 2.12
μ m with laser-guide star adaptive optics. These observations reveal that the mean luminosity of Sgr A* increased by a factor of ∼3 in 2019, and the 2019 light curves had higher variance than in all time periods we examined. We find that the 2020–2022 flux distribution is statistically consistent with the historical sample and model predictions, but with fewer bright measurements above 0.6 mJy at the ∼2σ level. Since 2019, we have observed a maximumK s (2.2μ m) flux of 0.9 mJy, compared to the highest pre-2019 flux of 2.0 mJy and highest 2019 flux of 5.6 mJy. Our results suggest that the 2019 activity was caused by a temporary accretion increase onto Sgr A*, possibly due to delayed accretion of tidally stripped gas from the gaseous object G2 in 2014. We also examine faint Sgr A* fluxes over a long time baseline to search for a quasi-steady quiescent state. We find that Sgr A* displays flux variations over a factor of ∼500, with no evidence for a quiescent state in the NIR. -
Abstract The eccentricity of a substellar companion is an important tracer of its formation history. Directly imaged companions often present poorly constrained eccentricities. A recently developed prior framework for orbit fitting called “observable-based priors” has the advantage of improving biases in derived orbit parameters for objects with minimal phase coverage, which is the case for the majority of directly imaged companions. We use observable-based priors to fit the orbits of 21 exoplanets and brown dwarfs in an effort to obtain the eccentricity distributions with minimized biases. We present the objects’ individual posteriors compared to their previously derived distributions, showing in many cases a shift toward lower eccentricities. We analyze the companions’ eccentricity distribution at a population level, and compare this to the distributions obtained with the traditional uniform priors. We fit a Beta distribution to our posteriors using observable-based priors, obtaining shape parameters
α = andβ = . This represents an approximately flat distribution of eccentricities. The derivedα andβ parameters are consistent with the values obtained using uniform priors, though uniform priors lead to a tail at high eccentricities. We find that separating the population into high- and low-mass companions yields different distributions depending on the classification of intermediate-mass objects. We also determine via simulation that the minimal orbit coverage needed to give meaningful posteriors under the assumptions made for directly imaged planets is ≈15% of the inferred period of the orbit. -
Abstract We measure the 3D kinematic structures of the young stars within the central 0.5 pc of our Galactic Center using the 10 m telescopes of the W. M. Keck Observatory over a time span of 25 yr. Using high-precision measurements of positions on the sky and proper motions and radial velocities from new observations and the literature, we constrain the orbital parameters for each young star. Our results show two statistically significant substructures: a clockwise stellar disk with 18 candidate stars, as has been proposed before, but with an improved disk membership; and a second, almost edge-on plane of 10 candidate stars oriented east–west on the sky that includes at least one IRS 13 star. We estimate the eccentricity distribution of each substructure and find that the clockwise disk has 〈
e 〉 = 0.39 and the edge-on plane has 〈e 〉 = 0.68. We also perform simulations of each disk/plane with incompleteness and spatially variable extinction to search for asymmetry. Our results show that the clockwise stellar disk is consistent with a uniform azimuthal distribution within the disk. The edge-on plane has an asymmetry that cannot be explained by variable extinction or incompleteness in the field. The orientation, asymmetric stellar distribution, and high eccentricity of the edge-on plane members suggest that this structure may be a stream associated with the IRS 13 group. The complex dynamical structure of the young nuclear cluster indicates that the star formation process involved complex gas structures and dynamics and is inconsistent with a single massive gaseous disk. -
Abstract We present the results of the first systematic search for spectroscopic binaries within the central 2 × 3 arcsec2around the supermassive black hole at the center of the Milky Way galaxy. This survey is based primarily on over a decade of adaptive optics-fed integral-field spectroscopy (
R ∼ 4000), obtained as part of the Galactic Center Orbits Initiative at Keck Observatory, and it has a limitingK ’-band magnitude of 15.8, which is at least 4 mag deeper than previous spectroscopic searches for binaries at larger radii within the central nuclear star cluster. From this primary data set, over 600 new radial velocities are extracted and reported, increasing by a factor of 3 the number of such measurements. We find no significant periodic signals in our sample of 28 stars, of which 16 are massive, young (main-sequence B) stars and 12 are low-mass, old (M and K giant) stars. Using Monte Carlo simulations, we derive upper limits on the intrinsic binary star fraction for the young star population at 47% (at 95% confidence) located ∼20 mpc from the black hole. The young star binary fraction is significantly lower than that observed in the field (70%). This result is consistent with a scenario in which the central supermassive black hole drives nearby stellar binaries to merge or be disrupted, and it may have important implications for the production of gravitational waves and hypervelocity stars. -
Abstract We present two decades of new high-angular-resolution near-infrared data from the W. M. Keck Observatory that reveal extreme evolution in X7, an elongated dust and gas feature, presently located half an arcsecond from the Galactic Center supermassive black hole. With both spectro-imaging observations of Br-
γ line emission andLp (3.8μ m) imaging data, we provide the first estimate of its orbital parameters and quantitative characterization of the evolution of its morphology and mass. We find that the leading edge of X7 appears to be on a mildly eccentric (e ∼ 0.3), relatively short-period (170 yr) orbit and is headed toward periapse passage, estimated to occur in ∼2036. Furthermore, our kinematic measurements rule out the earlier suggestion that X7 is associated with the stellar source S0-73 or with any other point source that has overlapped with X7 during our monitoring period. Over the course of our observations, X7 has (1) become more elongated, with a current length-to-width ratio of 9, (2) maintained a very consistent long-axis orientation (position angle of 50°), (3) inverted its radial velocity differential from tip to tail from −50 to +80 km s−1, and (4) sustained its total brightness (12.8Lp magnitudes at the leading edge) and color temperature (425 K), which suggest a constant mass of ∼50M Earth. We present a simple model showing that these results are compatible with the expected effect of tidal forces exerted on it by the central black hole, and we propose that X7 is the gas and dust recently ejected from a grazing collision in a binary system. -
Abstract We present new absolute proper-motion measurements for the Arches and Quintuplet clusters, two young massive star clusters near the Galactic center. Using multiepoch HST observations, we construct proper-motion catalogs for the Arches (∼35,000 stars) and Quintuplet (∼40,000 stars) fields in ICRF coordinates established using stars in common with the Gaia EDR3 catalog. The bulk proper motions of the clusters are measured to be (
μ α *,μ δ ) = (−0.80 ± 0.032, −1.89 ± 0.021) mas yr−1for the Arches and (μ α *,μ δ ) = (−0.96 ± 0.032, −2.29 ± 0.023) mas yr−1for the Quintuplet, achieving ≳5× higher precision than past measurements. We place the first constraints on the properties of the cluster orbits that incorporate the uncertainty in their current line-of-sight distances. The clusters will not approach closer than ∼25 pc to Sgr A*, making it unlikely that they will inspiral into the nuclear star cluster within their lifetime. Further, the cluster orbits are not consistent with being circular; the average value ofr apo/r periis ∼1.9 (equivalent to an eccentricity of ∼0.31) for both clusters. Lastly, we find that the clusters do not share a common orbit, challenging one proposed formation scenario in which the clusters formed from molecular clouds on the open stream orbit derived by Kruijssen et al. Meanwhile, our constraints on the birth location and velocity of the clusters offer mild support for a scenario in which the clusters formed via collisions between gas clouds on thex 1andx 2bar orbit families. -
Abstract We report the first star formation history study of the Milky Ways nuclear star cluster (NSC), which includes observational constraints from a large sample of stellar metallicity measurements. These metallicity measurements were obtained from recent surveys from Gemini and the Very Large Telescope of 770 late-type stars within the central 1.5 pc. These metallicity measurements, along with photometry and spectroscopically derived temperatures, are forward modeled with a Bayesian inference approach. Including metallicity measurements improves the overall fit quality, as the low-temperature red giants that were previously difficult to constrain are now accounted for, and the best fit favors a two-component model. The dominant component contains 93% ± 3% of the mass, is metal-rich (
), and has an age of Gyr, which is ∼3 Gyr younger than earlier studies with fixed (solar) metallicity; this younger age challenges coevolutionary models in which the NSC and supermassive black holes formed simultaneously at early times. The minor population component has low metallicity ( ) and contains ∼7% of the stellar mass. The age of the minor component is uncertain (0.1–5 Gyr old). Using the estimated parameters, we infer the following NSC stellar remnant population (with ∼18% uncertainty): 1.5 × 105neutron stars, 2.5 × 105stellar-mass black holes (BHs), and 2.2 × 104BH–BH binaries. These predictions result in 2–4 times fewer neutron stars compared to earlier predictions that assume solar metallicity, introducing a possible new path to understand the so-called “missing-pulsar problem”. Finally, we present updated predictions for the BH–BH merger rates (0.01–3 Gpc−3yr−1). -
Abstract Type Ia supernovae (SNe Ia) are securely understood to come from the thermonuclear explosion of a white dwarf as a result of binary interaction, but the nature of that binary interaction and the secondary object is uncertain. Recently, a double white dwarf model known as the dynamically driven double-degenerate double-detonation (D6) model has become a promising explanation for these events. One realization of this scenario predicts that the companion may survive the explosion and reside within the remnant as a fast moving (
V peculiar> 1000 km s−1), overluminous (L > 0.1L ⊙) white dwarf. Recently, three objects that appear to have these unusual properties have been discovered in the Gaia survey. We obtained photometric observations of the SN Ia remnant SN 1006 with the Dark Energy Camera over four years to attempt to discover a similar star. We present a deep, high-precision astrometric proper-motion survey of the interior stellar population of the remnant. We rule out the existence of a high-proper-motion object consistent with our tested realization of the D6 scenario (V transverse> 600 km s−1withm r < 21 corresponding to an intrinsic luminosity ofL > 0.0176L ⊙). We conclude that such a star does not exist within the remnant or is hidden from detection by either strong localized dust or the unlikely possibility of ejection from the binary system almost parallel to the line of sight.