skip to main content


Search for: All records

Award ID contains: 1909584

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present spectroscopic data for 16,369 stellar targets within and/or toward 38 dwarf spheroidal galaxies and faint star clusters within the Milky Way halo environment. All spectra come from observations with the multiobject, fiber-fed echelle spectrographs M2FS at the Magellan/Clay telescope or Hectochelle at the MMT, reaching a typical limiting magnitudeG≲ 21. Data products include processed spectra from all observations and catalogs listing estimates—derived from template model fitting—of line-of-sight velocity (median uncertainty 1.4 km s−1) effective temperature (255 K), (base-10 logarithm of) surface gravity (0.59 dex in cgs units), [Fe/H] (0.4 dex) and [Mg/Fe] (0.27 dex) abundance ratios. The sample contains multiepoch measurements for 3720 sources, with up to 15 epochs per source, enabling studies of intrinsic spectroscopic variability. The sample contains 6087 likely red giant stars (based on surface gravity), and 4492 likely members (based on line-of-sight velocity and Gaia-measured proper motion) of the target systems. The number of member stars per individual target system ranges from a few, for the faintest systems, to ∼850 for the most luminous. For most systems, our new samples extend over wider fields than have previously been observed; of the likely members in our samples, 820 lie beyond 2 times the projected half-light radius of their host system, and 42 lie beyond 5Rhalf.

     
    more » « less
  2. ABSTRACT

    We present the results of fitting a flexible stellar stream density model to a collection of thirteen streams around the Milky Way, using photometric data from DES, DECaLS, and Pan-STARRS. We construct density maps for each stream and characterize their tracks on the sky, width, and distance modulus curves along the length of each stream. We use these measurements to compute lengths and total luminosities of streams and identify substructures. Several streams show prominent substructures, such as stream broadening, gaps, large deviations of stream tracks, and sharp changes in stream densities. Examining the group of streams as a population, as expected we find that streams with globular cluster progenitors are typically narrower than those with dwarf galaxy progenitors, with streams around 100 pc wide showing overlap between the two populations. We also note the average luminosity of globular cluster streams is significantly lower than the typical luminosity of intact globular clusters. The likely explanation is that observed globular cluster streams preferentially come from lower luminosity and lower density clusters. The stream measurements done in a uniform manner presented here will be helpful for more detailed stream studies such as identifying candidate stream members for spectroscopic follow up and stellar stream dynamical modelling.

     
    more » « less
  3. ABSTRACT

    We present new MMT/Hectochelle spectroscopic measurements for 257 stars observed along the line of sight to the ultrafaint dwarf galaxy Triangulum II (Tri II). Combining results from previous Keck/DEIMOS spectroscopy, we obtain a sample that includes 16 likely members of Tri II, with up to 10 independent redshift measurements per star. To this multi-epoch kinematic data set, we apply methodology that we develop in order to infer binary orbital parameters from sparsely sampled radial velocity curves with as few as two epochs. For a previously identified (spatially unresolved) binary system in Tri II, we infer an orbital solution with period $296.0_{-3.3}^{+3.8} \rm ~ d$, semimajor axis $1.12^{+0.41}_{-0.24}\rm ~au$, and systemic velocity $-380.0 \pm 1.7 \rm ~km ~s^{-1}$ that we then use in the analysis of Tri II’s internal kinematics. Despite this improvement in the modelling of binary star systems, the current data remain insufficient to resolve the velocity dispersion of Tri II. We instead find a 95 per cent confidence upper limit of $\sigma _{v} \lesssim 3.4 \rm ~km~s^{-1}$.

     
    more » « less
  4. Abstract

    We use a geometric method to derive (two-dimensional) separation functions among pairs of objects within populations of specified position functiondN/dR. We present analytic solutions for separation functions corresponding to a uniform surface density within a circular field, a Plummer sphere (viewed in projection), and the mixture thereof—including contributions from binary objects within both subpopulations. These results enable inferences about binary object populations via direct modeling of object position and pair separation data, without resorting to standard estimators of the two-point correlation function. Analyzing mock data sets designed to mimic known dwarf spheroidal galaxies, we demonstrate the ability to recover input properties including the number of wide binary star systems and, in cases where the number of resolved binary pairs is assumed to be ≳a few hundred, characteristic features (e.g., steepening and/or truncation) of their separation function. Combined with forthcoming observational capabilities, this methodology opens a window onto the formation and/or survival of wide binary populations in dwarf galaxies, and offers a novel probe of inferred dark matter substructure on the smallest galactic scales.

     
    more » « less
  5. ABSTRACT

    We present an RR Lyrae (RRL) catalogue based on the combination of the third data release of the Zwicky Transient Facility (ZTF DR3) and Gaia EDR3. We use a multistep classification pipeline relying on the Fourier decomposition fitting to the multiband ZTF light curves and random forest classification. The resulting catalogue contains 71 755 RRLs with period and light-curve parameter measurements and has a completeness of 0.92 and a purity of 0.92 with respect to the Specific Objects Study Gaia DR2 RRLs. The catalogue covers the Northern sky with declination ≥−28°, its completeness is ≳0.8 for heliocentric distance ≤80 kpc, and the most distant RRL is at 132 kpc. Compared with several other RRL catalogues covering the Northern sky, our catalogue has more RRLs around the Galactic halo and is more complete at low-Galactic latitude areas. Analysing the spatial distribution of RRL in the catalogue reveals the previously known major overdensities of the Galactic halo, such as the Virgo overdensity and the Hercules–Aquila Cloud, with some evidence of an association between the two. We also analyse the Oosterhoff fraction differences throughout the halo, comparing it with the density distribution, finding increasing Oosterhoff I fraction at the elliptical radii between 16 and 32 kpc and some evidence of different Oosterhoff fractions across various halo substructures.

     
    more » « less
  6. m2fs_HiRes_catalog_public.fits: public catalog of measurements derived from spectroscopic observations of individual targets with the Magellan/M2FS spectrograph in HiRes configuration

    m2fs_MedRes_catalog_public.fits: public catalog of measurements derived from spectroscopic observations of individual targets with the Magellen/M2FS spectrograph in MedRes configuration

    hecto_catalog_public.fits: public catalog of measurements derived from spectroscopic observations of individual targets with the MMT/Hectochelle spectrograph

    fits_files.tar.gz: Supplementary data products, including all sky-subtracted spectra from individual targets and best-fitting model spectra.

    template_spectra.tar.gz: synthetic template spectra (columns are wavelength in air (Angstroms), normalized flux)

     
    more » « less
  7. Abstract The Fornax dwarf spheroidal galaxy has an anomalous number of globular clusters, five, for its stellar mass. There is a longstanding debate about a potential sixth globular cluster (Fornax 6) that has recently been “rediscovered” in DECam imaging. We present new Magellan/M2FS spectroscopy of the Fornax 6 cluster and Fornax dSph. Combined with literature data we identify ∼15–17 members of the Fornax 6 cluster, showing that this overdensity is indeed a star cluster and associated with the Fornax dSph. The cluster is significantly more metal-rich (mean metallicity of [ Fe / H ] ¯ = −0.71 ± 0.05) than the other five Fornax globular clusters (−2.5 < [Fe/H] < −1.4) and more metal-rich than the bulk of Fornax. We measure a velocity dispersion of 5.6 − 1.6 + 2.0 km s − 1 corresponding to an anomalously high mass-to-light of 15 < M / L < 258 at 90% confidence when calculated assuming equilibrium. Two stars inflate this dispersion and may be either Fornax field stars or as yet unresolved binary stars. Alternatively, the Fornax 6 cluster may be undergoing tidal disruption. Based on its metal-rich nature, the Fornax 6 cluster is likely younger than the other Fornax clusters, with an estimated age of ∼2 Gyr when compared to stellar isochrones. The chemodynamics and star formation history of Fornax shows imprints of major events such as infall into the Milky Way, multiple pericenter passages, star formation bursts, and/or potential mergers or interactions. Any of these events may have triggered the formation of the Fornax 6 cluster. 
    more » « less
  8. null (Ed.)