- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Erickson, John_R (2)
-
Sharbati, Mohammad_T (2)
-
Wan, Qingzhou (2)
-
Xiong, Feng (2)
-
Benosman, Ryad (1)
-
Li, Yiyang (1)
-
Rasetto, Marco (1)
-
Reilly, Matthew_T (1)
-
Shao, Qiming (1)
-
Velagala, Sridhar_Reddy (1)
-
Wang, Kang_L (1)
-
Zhang, Peng (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Neuromorphic computing has the great potential to enable faster and more energy‐efficient computing by overcoming the von Neumann bottleneck. However, most emerging nonvolatile memory (NVM)‐based artificial synapses suffer from insufficient precision, nonlinear synaptic weight update, high write voltage, and high switching latency. Moreover, the spatiotemporal dynamics, an important temporal component for cognitive computing in spiking neural networks (SNNs), are hard to generate with existing complementary metal–oxide–semiconductor (CMOS) devices or emerging NVM. Herein, a three‐terminal, LixWO3‐based electrochemical synapse (LiWES) is developed with low programming voltage (0.2 V), fast programming speed (500 ns), and high precision (1024 states) that is ideal for artificial neural networks applications. Time‐dependent synaptic functions such as paired‐pulse facilitation (PPF) and temporal filtering that are critical for SNNs are also demonstrated. In addition, by leveraging the spike‐encoded timing information extracted from the short‐term plasticity (STP) behavior in the LiWES, an SNNs model is built to benchmark the pattern classification performance of the LiWES, and the result indicates a large boost in classification performance (up to 128×), compared with those NO‐STP synapses.more » « less
-
Wan, Qingzhou; Zhang, Peng; Shao, Qiming; Sharbati, Mohammad_T; Erickson, John_R; Wang, Kang_L; Xiong, Feng (, APL Materials)Neuromorphic computing has recently emerged as a promising paradigm to overcome the von-Neumann bottleneck and enable orders of magnitude improvement in bandwidth and energy efficiency. However, existing complementary metal-oxide-semiconductor (CMOS) digital devices, the building block of our computing system, are fundamentally different from the analog synapses, the building block of the biological neural network—rendering the hardware implementation of the artificial neural networks (ANNs) not scalable in terms of area and power, with existing CMOS devices. In addition, the spatiotemporal dynamic, a crucial component for cognitive functions in the neural network, has been difficult to replicate with CMOS devices. Here, we present the first topological insulator (TI) based electrochemical synapse with programmable spatiotemporal dynamics, where long-term and short-term plasticity in the TI synapse are achieved through the charge transfer doping and ionic gating effects, respectively. We also demonstrate basic neuronal functions such as potentiation/depression and paired-pulse facilitation with high precision (>500 states per device), as well as a linear and symmetric weight update. We envision that the dynamic TI synapse, which shows promising scaling potential in terms of energy and speed, can lead to the hardware acceleration of truly neurorealistic ANNs with superior cognitive capabilities and excellent energy efficiency.more » « less
An official website of the United States government
