skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1909846

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The human tear film is a multilayer structure in which the dynamics are often strongly affected by a floating lipid layer. That layer has liquid crystalline characteristics and plays important roles in the health of the tear film. Previous models have treated the lipid layer as a Newtonian fluid in extensional flow. Motivated to develop a more realistic treatment, we present a model for the extensional flow of thin sheets of nematic liquid crystal. The rod-like molecules of these substances impart an elastic contribution to the rheology. We rescale a weakly elastic model due to Cummings et al. [“Extensional flow of nematic liquid crystal with an applied electric field,” Eur. J. Appl. Math. 25, 397–423 (2014).] to describe a lipid layer of moderate elasticity. The resulting system of two nonlinear partial differential equations for sheet thickness and axial velocity is fourth order in space, but still represents a significant reduction of the full system. We analyze solutions arising from several different boundary conditions, motivated by the underlying application, with particular focus on dynamics and underlying mechanisms under stretching. We solve the system numerically, via collocation with either finite difference or Chebyshev spectral discretization in space, together with implicit time stepping. At early times, depending on the initial film shape, pressure either aids or opposes extensional flow, which changes the free surface dynamics of the sheet and can lead to patterns reminiscent of those observed in tear films. We contrast this finding with the cases of weak elasticity and Newtonian flow, where the sheet retains the same qualitative shape throughout time. 
    more » « less
  2. Purpose: Fluorescence imaging is a valuable tool for studying tear film dynamics andcorneal staining. Automating the quantification of fluorescence images is a challenging necessary step for making connections to mathematical models. A significant partof the challenge is identifying the region of interest, specifically the cornea, for collected data with widely varying characteristics.Methods: The gradient of pixel intensity at the cornea–sclera limbus is used as the objective of standard optimization to find a circle that best represents the cornea. Results of the optimization in one image are used as initial conditions in the next imageof a sequence. Additional initial conditions are chosen heuristically. The algorithm iscoded in open-source software.Results: The algorithm was first applied to 514 videos of 26 normal subjects, for a total of over 87,000 images. Only in 12 of the videos does the standard deviation in thedetected corneal radius exceed 1% of the image height, and only 3 exceeded 2%. The algorithm was applied to a sample of images from a second study with 142 dry-eye subjects. Significant staining was present in a substantial number of these images. Visual inspection and statistical analysis show good resuls for both normal and dry-eye images.Conclusion: The new algorithm is highly effective over a wide range of tear film andcorneal staining images collected at different times and locations. 
    more » « less
  3. Purpose: Little quantitative or mechanistic information about tear film breakup can be determined directly via current imaging techniques. In this paper, we present simplified mathematical models based on two proposed mechanisms of tear film breakup: evaporation of water from the tear film and tangential fluid flow within the tear film. We use our models to determine whether one or a combination of the two mechanisms causes tear film breakup in a variety of instances. In this study, we estimate related breakup parameters that cannot currently be measured in breakup during subject trials, such as tear film osmolarity and thinning rates. The present study validates our procedure against previous work.Methods: Five ordinary differential equation models for tear film thinning were designed that model evaporation, osmosis, and various types of tangential flow. Eight tear film breakup instances occurring within a time interval of 1–8 s postblink of five healthy subjects thatwere identified in fluorescence images in previous work were fit with these five models. The fitting procedure used a nonlinear least squares optimization that minimized the difference of the computed theoretical fluorescent intensity from the models and the experimental fluorescent intensity from the images. The optimization was conducted over the evaporation rate and up to three tangential flow rate parameters. The smallest norm of the difference was determined to correspond to the model that best explained the tear film dynamics.Results: All of the breakup instances were best fit by models with time-dependent tangential flow. Our optimal parameter values and thinning rate as well as tangential fluid flow profiles compare well with previous partial differential equation model results in most instances.Conclusion: Our fitting results suggest that a combination of tangential fluid flow and evaporation cause most of the breakup instances. Comparison with results from previous work suggests that the simplified models can capture the essential tear film dynamics in most cases, thereby validating this procedure for wider usage. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
    Abstract We present a mathematical model to study the influence of a lipid reservoir, seen experimentally, at the lid margin on the formation and relaxation of the tear film during a partial blink. Applying the lubrication limit, we derive two coupled non-linear partial differential equations characterizing the evolution of the aqueous tear fluid and the covering insoluble lipid concentration. Departing from prior works, we explore a new set of boundary conditions (BCs) enforcing hypothesized lipid concentration dynamics at the lid margins. Using both numerical and analytical approaches, we find that the lipid-focused BCs strongly impact tear film formation and thinning rates. Specifically, during the upstroke of the eyelid, we find specifying the lipid concentration at the lid margin accelerates thinning. Parameter regimes that cause tear film formation success or failure are identified. More importantly, this work expands our understanding of the consequences of lipid dynamics near the lid margins for tear film formation. 
    more » « less