skip to main content


Search for: All records

Award ID contains: 1909916

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Semantic relationships, such as hyponym–hypernym, cause–effect, meronym–holonym etc., between a pair of entities in a sentence are usually reflected through syntactic patterns. Automatic extraction of such patterns benefits several downstream tasks, including, entity extraction, ontology building, and question answering. Unfortunately, automatic extraction of such patterns has not yet received much attention from NLP and information retrieval researchers. In this work, we propose an attention-based supervised deep learning model, ASPER, which extracts syntactic patterns between entities exhibiting a given semantic relation in the sentential context. We validate the performance of ASPER on three distinct semantic relations—hyponym–hypernym, cause–effect, and meronym–holonym on six datasets. Experimental results show that for all these semantic relations, ASPER can automatically identify a collection of syntactic patterns reflecting the existence of such a relation between a pair of entities in a sentence. In comparison to the existing methodologies of syntactic pattern extraction, ASPER’s performance is substantially superior. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  2. In recent years, plentiful evidence illustrates that Graph Con- volutional Networks (GCNs) achieve extraordinary accom- plishments on the node classification task. However, GCNs may be vulnerable to adversarial attacks on label-scarce dy- namic graphs. Many existing works aim to strengthen the ro- bustness of GCNs; for instance, adversarial training is used to shield GCNs against malicious perturbations. However, these works fail on dynamic graphs for which label scarcity is a pressing issue. To overcome label scarcity, self-training attempts to iteratively assign pseudo-labels to highly confi- dent unlabeled nodes but such attempts may suffer serious degradation under dynamic graph perturbations. In this paper, we generalize noisy supervision as a kind of self-supervised learning method and then propose a novel Bayesian self- supervision model, namely GraphSS, to address the issue. Extensive experiments demonstrate that GraphSS can not only affirmatively alert the perturbations on dynamic graphs but also effectively recover the prediction of a node classifier when the graph is under such perturbations. These two advan- tages prove to be generalized over three classic GCNs across five public graph datasets. 
    more » « less
  3. Supervised learning, while deployed in real-life scenarios, often encounters instances of unknown classes. Conventional algorithms for training a supervised learning model do not provide an option to detect such instances, so they miss-classify such instances with 100% probability. Open Set Recognition (OSR) and Non-Exhaustive Learning (NEL) are potential solutions to overcome this problem. Most existing methods of OSR first classify members of existing classes and then identify instances of new classes. However, many of the existing methods of OSR only makes a binary decision, i.e., they only identify the existence of the unknown class. Hence, such methods cannot distinguish test instances belonging to incremental unseen classes. On the other hand, the majority of NEL methods often make a parametric assumption over the data distribution, which either fail to return good results, due to the reason that real-life complex datasets may not follow a well-known data distribution. In this paper, we propose a new online non-exhaustive learning model, namely, Non-Exhaustive Gaussian Mixture Generative Adversarial Networks (NE-GM-GAN) to address these issues. Our proposed model synthesizes Gaussian mixture based latent representation over a deep generative model, such as GAN, for incremental detection of instances of emerging classes in the test data. Extensive experimental results on several benchmark datasets show that NE-GM-GAN significantly outperforms the state-of-the-art methods in detecting instances of novel classes in streaming data. 
    more » « less