skip to main content


Search for: All records

Award ID contains: 1910014

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 18, 2024
  2. Join query evaluation with ordering is a fundamental data processing task in relational database management systems. SQL and custom graph query languages such as Cypher offer this functionality by allowing users to specify the order via the ORDER BY clause. In many scenarios, the users also want to see the first k results quickly (expressed by the LIMIT clause), but the value of k is not predetermined as user queries are arriving in an online fashion. Recent work has made considerable progress in identifying optimal algorithms for ranked enumeration of join queries that do not contain any projections. In this paper, we initiate the study of the problem of enumerating results in ranked order for queries with projections. Our main result shows that for any acyclic query, it is possible to obtain a near-linear (in the size of the database) delay algorithm after only a linear time preprocessing step for two important ranking functions: sum and lexicographic ordering. For a practical subset of acyclic queries known as star queries, we show an even stronger result that allows a user to obtain a smooth tradeoff between faster answering time guarantees using more preprocessing time. Our results are also extensible to queries containing cycles and unions. We also perform a comprehensive experimental evaluation to demonstrate that our algorithms, which are simple to implement, improve up to three orders of magnitude in the running time over state-of-the-art algorithms implemented within open-source RDBMS and specialized graph databases. 
    more » « less
  3. In the last few years, much effort has been devoted to developing join algorithms to achieve worst-case optimality for join queries over relational databases. Towards this end, the database community has had considerable success in developing efficient algorithms that achieve worst-case optimal runtime for full join queries, i.e., joins without projections. However, not much is known about join evaluation with projections beyond some simple techniques of pushing down the projection operator in the query execution plan. Such queries have a large number of applications in entity matching, graph analytics and searching over compressed graphs. In this paper, we study how a class of join queries with projections can be evaluated faster using worst-case optimal algorithms together with matrix multiplication. Crucially, our algorithms are parameterized by the output size of the final result, allowing for choosing the best execution strategy. We implement our algorithms as a subroutine and compare the performance with state-of-the-art techniques to show they can be improved upon by as much as 50x. More importantly, our experiments indicate that matrix multiplication is a useful operation that can help speed up join processing owing to highly optimized open-source libraries that are also highly parallelizable. 
    more » « less