skip to main content


Search for: All records

Award ID contains: 1910131

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract FOLD-RM is an automated inductive learning algorithm for learning default rules for mixed (numerical and categorical) data. It generates an (explainable) answer set programming (ASP) rule set for multi-category classification tasks while maintaining efficiency and scalability. The FOLD-RM algorithm is competitive in performance with the widely used, state-of-the-art algorithms such as XGBoost and multi-layer perceptrons, however, unlike these algorithms, the FOLD-RM algorithm produces an explainable model. FOLD-RM outperforms XGBoost on some datasets, particularly large ones. FOLD-RM also provides human-friendly explanations for predictions. 
    more » « less
  2. FOLD-R is an automated inductive learning algorithm for learning default rules for mixed (numerical and categorical) data. It generates an (explainable) normal logic program (NLP) rule set for classification tasks. We present an improved FOLD-R algorithm, called FOLD-R++, that significantly increases the efficiency and scalability of FOLD-R by orders of magnitude. FOLD-R++ improves upon FOLD-R without compromising or losing information in the input training data during the encoding or feature selection phase. The FOLD-R++ algorithm is competitive in performance with the widely-used XGBoost algorithm, however, unlike XGBoost, the FOLD-R++ algorithm produces an explainable model. FOLD-R++ is also competitive in performance with the RIPPER system, however, on large datasets FOLD-R++ outperforms RIPPER. We also create a powerful tool-set by combining FOLD-R++ with s(CASP)—a goal-directed answer set programming (ASP) execution engine—to make predictions on new data samples using the normal logic program generated by FOLD-R++. The s(CASP) system also produces a justification for the prediction. Experiments presented in this paper show that our improved FOLD-R++ algorithm is a significant improvement over the original design and that the s(CASP) system can make predictions in an efficient manner as well. 
    more » « less
  3. null (Ed.)
    Understanding the meaning of a text is a fundamental challenge of natural language understanding (NLU) research. An ideal NLU system should process a language in a way that is not exclusive to a single task or a dataset. Keeping this in mind, we have introduced a novel knowledge driven semantic representation approach for English text. By leveraging the VerbNet lexicon, we are able to map syntax tree of the text to its commonsense meaning represented using basic knowledge primitives. The general purpose knowledge represented from our approach can be used to build any reasoning based NLU system that can also provide justification. We applied this approach to construct two NLU applications that we present here: SQuARE (Semantic-based Question Answering and Reasoning Engine) and StaCACK (Stateful Conversational Agent using Commonsense Knowledge). Both these systems work by ``truly understanding'' the natural language text they process and both provide natural language explanations for their responses while maintaining high accuracy. 
    more » « less
  4. Ricca, Francesco ; Russo, Alessandra (Ed.)
    We focus on the problem of inducing logic programs that explain models learned by the support vector machine (SVM) algorithm. The top-down sequential covering inductive logic programming (ILP) algorithms (e.g., FOIL) apply hill-climbing search using heuristics from information theory. A major issue with this class of algorithms is getting stuck in local optima. In our new approach, however, the data-dependent hill-climbing search is replaced with a model-dependent search where a globally optimal SVM model is trained first, then the algorithm looks into support vectors as the most influential data points in the model, and induces a clause that would cover the support vector and points that are most similar to that support vector. Instead of defining a fixed hypothesis search space, our algorithm makes use of SHAP, an example-specific interpreter in explainable AI, to determine a relevant set of features. This approach yields an algorithm that captures the SVM model’s underlying logic and outperforms other ILP algorithms in terms of the number of induced clauses and classification evaluation metrics. 
    more » « less