skip to main content


Search for: All records

Award ID contains: 1910492

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 12, 2024
  2. Free, publicly-accessible full text available June 1, 2024
  3. Free, publicly-accessible full text available May 1, 2024
  4. Free, publicly-accessible full text available May 1, 2024
  5. Using natural-language feedback to guide image generation and manipulation can greatly lower the required efforts and skills. This topic has received increased attention in recent years through refinement of Generative Adversarial Networks (GANs); however, most existing works are limited to single-round interaction, which is not reflective of real world interactive image editing workflows. Furthermore, previous works dealing with multi-round scenarios are limited to predefined feedback sequences, which is also impractical. In this paper, we propose a novel framework for Text-based Interactive image generation and manipulation (TiGAN) that responds to users' natural-language feedback. TiGAN utilizes the powerful pre-trained CLIP model to understand users' natural-language feedback and exploits contrastive learning for a better text-to-image mapping. To maintain the image consistency during interactions, TiGAN generates intermediate feature vectors aligned with the feedback and selectively feeds these vectors to our proposed generative model. Empirical results on several datasets show that TiGAN improves both interaction efficiency and image quality while better avoids undesirable image manipulation during interactions. 
    more » « less
  6. Humans are exposed to numerous compounds daily, some of which have adverse effects on health. Computational approaches for modeling toxicological data in conjunction with machine learning algorithms have gained popularity over the last few years. Machine learning approaches have been used to predict toxicity-related biological activities using chemical structure descriptors. However, toxicity-related proteomic features have not been fully investigated. In this study, we construct a computational pipeline using machine learning models for predicting the most important protein features responsible for the toxicity of compounds taken from the Tox21 dataset that is implemented within the multiscale Computational Analysis of Novel Drug Opportunities (CANDO) therapeutic discovery platform. Tox21 is a highly imbalanced dataset consisting of twelve in vitro assays, seven from the nuclear receptor (NR) signaling pathway and five from the stress response (SR) pathway, for more than 10,000 compounds. For the machine learning model, we employed a random forest with the combination of Synthetic Minority Oversampling Technique (SMOTE) and the Edited Nearest Neighbor (ENN) method (SMOTE+ENN), which is a resampling method to balance the activity class distribution. Within the NR and SR pathways, the activity of the aryl hydrocarbon receptor (NR-AhR) and the mitochondrial membrane potential (SR-MMP) were two of the top-performing twelve toxicity endpoints with AUCROCs of 0.90 and 0.92, respectively. The top extracted features for evaluating compound toxicity were analyzed for enrichment to highlight the implicated biological pathways and proteins. We validated our enrichment results for the activity of the AhR using a thorough literature search. Our case study showed that the selected enriched pathways and proteins from our computational pipeline are not only correlated with AhR toxicity but also form a cascading upstream/downstream arrangement. Our work elucidates significant relationships between protein and compound interactions computed using CANDO and the associated biological pathways to which the proteins belong for twelve toxicity endpoints. This novel study uses machine learning not only to predict and understand toxicity but also elucidates therapeutic mechanisms at a proteomic level for a variety of toxicity endpoints. 
    more » « less