skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1911095

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Brain-inspired Hyperdimensional (HD) computing models cognition by exploiting properties of high dimensional statistics– high-dimensional vectors, instead of working with numeric values used in contemporary processors. A fundamental weakness of existing HD computing algorithms is that they require to use floating point models in order to provide acceptable accuracy on realistic classification problems. However, working with floating point values significantly increases the HD computation cost. To address this issue, we proposed QuantHD, a novel framework for quantization of HD computing model during training. QuantHD enables HD computing to work with a low-cost quantized model (binary or ternary model) while providing a similar accuracy as the floating point model. We accordingly propose an FPGA implementation which accelerates HD computing in both training and inference phases. We evaluate QuantHD accuracy and efficiency on various real-world applications, and observe that QuantHD can achieve on average 17.2% accuracy improvement as compared to the existing binarized HD computing algorithms which provide a similar computation cost. In terms of efficiency, QuantHD FPGA implementation can achieve on average 42.3× and 4.7× (34.1× and 4.1×) energy efficiency improvement and speedup during inference (training) as compared to the state-of-the-art HD computing algorithms. 
    more » « less
  2. Brain-inspired HyperDimensional (HD) computing emulates cognitive tasks by computing with long binary vectors–aka hypervectors–as opposed to computing with numbers. However, we observed that in order to provide acceptable classification accuracy on practical applications, HD algorithms need to be trained and tested on non-binary hypervectors. In this paper, we propose SearcHD, a fully binarized HD computing algorithm with a fully binary training. SearcHD maps every data points to a high-dimensional space with binary elements. Instead of training an HD model with non-binary elements, SearcHD implements a full binary training method which generates multiple binary hypervectors for each class. We also use the analog characteristic of non-volatile memories (NVMs) to perform all encoding, training, and inference computations in memory. We evaluate the efficiency and accuracy of SearcHD on a wide range of classification applications. Our evaluation shows that SearcHD can provide on average 31.1× higher energy efficiency and 12.8× faster training as compared to the state-of-the-art HD computing algorithms. 
    more » « less
  3. This article describes a method for efficient hypervector operations using a grouping strategy for reduced computations. Quantization is used for reducing the number of multiplications, whereas caching of magnitude is used for eliminating redundant computations. 
    more » « less