- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Heilman, Steven (3)
-
Tarter, Alex (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We demonstrate a method for proving precise concentration inequalities in uniformly random trees on $$n$$ vertices, where $$n\geq1$$ is a fixed positive integer. The method uses a bijection between mappings $$f\colon\{1,\ldots,n\}\to\{1,\ldots,n\}$$ and doubly rooted trees on $$n$$ vertices. The main application is a concentration inequality for the number of vertices connected to an independent set in a uniformly random tree, which is then used to prove partial unimodality of its independent set sequence. So, we give probabilistic arguments for inequalities that often use combinatorial arguments.more » « less
-
Heilman, Steven (, Notices of the American Mathematical Society)null (Ed.)
-
Heilman, Steven; Tarter, Alex (, Forum of Mathematics, Sigma)Abstract Using the calculus of variations, we prove the following structure theorem for noise-stable partitions: a partition of n -dimensional Euclidean space into m disjoint sets of fixed Gaussian volumes that maximise their noise stability must be $(m-1)$ -dimensional, if $$m-1\leq n$$ . In particular, the maximum noise stability of a partition of m sets in $$\mathbb {R}^{n}$$ of fixed Gaussian volumes is constant for all n satisfying $$n\geq m-1$$ . From this result, we obtain: (i) A proof of the plurality is stablest conjecture for three candidate elections, for all correlation parameters $$\rho $$ satisfying $$0<\rho <\rho _{0}$$ , where $$\rho _{0}>0$$ is a fixed constant (that does not depend on the dimension n ), when each candidate has an equal chance of winning. (ii) A variational proof of Borell’s inequality (corresponding to the case $m=2$ ). The structure theorem answers a question of De–Mossel–Neeman and of Ghazi–Kamath–Raghavendra. Item (i) is the first proof of any case of the plurality is stablest conjecture of Khot-Kindler-Mossel-O’Donnell for fixed $$\rho $$ , with the case $$\rho \to L1^{-}$$ being solved recently. Item (i) is also the first evidence for the optimality of the Frieze–Jerrum semidefinite program for solving MAX-3-CUT, assuming the unique games conjecture. Without the assumption that each candidate has an equal chance of winning in (i), the plurality is stablest conjecture is known to be false.more » « less
An official website of the United States government
