Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We demonstrate that doping hydroxyapatite (HAp) with Cr3+ions induces oxygen vacancies, contributing to paramagnetism. Cathodoluminescence and photoluminescence analyses reveal increased oxygen vacancy formation in$${\text{O}}{\text{H}}^{-}$$ and$${\text{P}}{\text{O}}_{4}^{3-}$$ groups with rising Cr3+concentrations, highlighted by stronger cathodoluminescence emissions at 2.57 and 2.95 eV and the photoluminescence emission at 3.32 eV. Raman spectroscopy shows new modes at 900 and 970 cm−1, indicating distortion of thev1vibrational mode due to Cr3+substitution at Ca(II) sites of the HAp lattice. X-ray photoelectron spectroscopy confirms Cr3+in the HAp:Cr. Magnetometry reveals a shift from diamagnetism in pure HAp to increasing paramagnetism in HAp:Cr with higher Cr3+content, achieving 0.0460 emu/g at 10 kOe with concentrations higher than 2.9 at.%. This paramagnetism is attributed to Cr3+ions and singly ionized oxygen vacancies$$V^{\prime}_{{\text{O}}}$$ aligning along an external magnetic field, with$$V^{\prime}_{{\text{O}}}$$ formation linked to$${\text{PO}}_{4}^{{3}-}$$ replacement by$${\text{PO}}_{3}^{{2}-}$$ in HAp.more » « less
-
Abstract Computers, televisions, and smartphones are revolutionized by the invention of InGaN blue light‐emitting diode (LED) backlighting. Yet, continual exposure to the intense blue LED emission from these modern displays can cause insomnia and mood disorders. Developing “human‐centric” backlighting that uses a violet‐emitting LED chip and a trichromatic phosphor mixture to generate color images is one approach that addresses this problem. The challenge is finding a blue‐emitting phosphor that possesses a sufficiently small Stokes’ shift to efficiently down‐convert violet LED light and produce a narrow blue emission. This work reports a new oxynitride phosphor that meets this demand. K3AlP3O9N:Eu2+ exhibits an unexpectedly narrow (45 nm, 2206 cm−1), thermally robust, and efficient blue photoluminescence upon violet excitation. Computational modeling and temperature‐dependent optical property measurements reveal that the narrow emission arises from a rare combination of preferential excitation and site‐selective quenching. The resulting chromaticity coordinates of K3AlP3O9N:Eu2+ lie closer to the vertex of the Rec. 2020 than a blue LED chip and provides access to ≈10% more colors than a commercial tablet when combined with commercial red‐ and green‐emitting phosphors. Alongside the wide gamut, tuning the emission from the violet LED and phosphor blend can reduce blue light emissions to produce next‐generation, human‐centric displays.more » « less
-
Narayanan, Barath; Zelinski, Michael E; Taha, Tarek M; Awwal, Abdul A; Iftekharuddin, Khan M (Ed.)Free, publicly-accessible full text available September 16, 2026
-
We report the influence of vacancy point defects on the conductivity and piezoelectricity of hydroxyapatite (HAp) nanofibers. A combination of experimental techniques, including conductive atomic force microscopy, electrostatic force microscopy, and switching spectroscopy piezoresponse force microscopy, along with computational modeling, was employed to elucidate the conduction mechanisms and charge accumulation effects in HAp. Our findings demonstrate that oxygen and calcium vacancy defects play a crucial role in the conduction mechanism of HAp nanofibers, specifically through charge-trapping and de-trapping processes, as well as in charge accumulation and the piezoelectric response. The Poole-Frenkel conduction mechanism was confirmed by fitting experimental current-voltage data to a theoretical model, revealing a dielectric constant consistent with previously reported theoretical values. These insights contribute to a deeper understanding of the role of point defects in the electrical and piezoelectric properties of HAp, which is essential for optimizing its performance in biomedical applications.more » « lessFree, publicly-accessible full text available August 21, 2026
-
We present a luminescence study investigating the dissolution of rare-earth-doped hydroxyapatite scaffolds in simulated body fluid (SBF), aiming to assess the luminescence stability of Tb-, Ce-, and Eu-doped scaffolds over time. Our findings reveal a consistent decrease in luminescence emission intensity across all samples over a four-week period in which the scaffolds were immersed in the SBF. In addition, energy-dispersive spectroscopy confirms a decrease in rare-earth ion concentration in the scaffolds with respect to time, whereas fluorescence spectroscopy shows the presence of rare-earth ions in the SBF, indicating the partial dissolution of the scaffolds over time. The use of rare-earth ions as luminescence markers provides insights into the mechanisms of apatite formation in hydroxyapatites. Thus, these scaffolds may find wider use in regenerative medicine, particularly in targeted drug delivery systems, where their luminescent properties have the potential to noninvasively track drug release.more » « less
-
We report compression tests on micropillars manufactured from bulk specimens of partially devitrified SAM2×5 (Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4). Yield strength values of ≈6 GPa are obtained. Such a high strength can be attributed to the higher glass transition temperature (883 K) of this material, which impedes the multiplication of shear bands under loading, and to the presence of hard crystalline domains that result from devitrification of the amorphous powders during powder consolidation. The Vickers hardness of the specimens is found to be strongly correlated to the processing temperature and, hence to the volume of crystalline phases present in the specimens. As the processing temperature is increased, there is a reduction in free volume from the structural relaxation process in the amorphous alloy, leading to the eventual nucleation of crystalline phases of BCC Fe, Cr2B, Cr21.30Fe1.7C6, or Fe23B2C4, during the densification process. These results shed light on the relationship between nanocrystalline domains and the mechanical behavior of Fe‐based amorphous/crystalline composites.more » « less
-
We describe the triboluminescence response of undoped (BaAl2Si2O8, h–BAS) and Eu-doped (h–BAS:Eu) barium hexacelsian powders and show that the triboluminescence behavior is dependent on the formation of barium vacancies. X-ray photoelectron spectroscopy of the h–BAS:Eu powders confirms the presence of Eu3+ and Eu2+ in the compound, leading to the formation of significant vacancy point defects in excess of those found in h–BAS as a result of the charge imbalance caused by the substitution of Eu3+ in Ba2+ sites. From electron paramagnetic resonance measurements and density functional theory (DFT) calculations, we demonstrate that the vacancy defects correspond to singly ionized barium vacancies. DFT-calculated thermodynamic transitions and electronic structure calculations reveal deep energy levels within the compound’s energy band gap, with a strong emission at 3.33 eV correlated to an electron exchange between the conduction band minimum and a barium vacancy center. Time-resolved triboluminescence spectra show that the increased concentration of barium vacancies in h–BAS:Eu enhances the signal by about 75% compared to the signal from h–BAS. These results play an important role in the understanding of fundamental mechanisms behind the triboluminescence response of ceramic materials as well as the role of different types of defects in this process.more » « less
-
Tantalum carbide (TaC) and hafnium carbide (HfC) have some of the highest melting temperatures among the transition metal carbides, borides, and nitrides, making them promising materials for high‐speed flight and high‐temperature structural applications. Solid solutions of TaC and HfC are of particular interest due to their enhanced oxidation resistance compared to pure TaC or HfC. This study looks at the effect of Hf content on the oxidation resistance of TaC–HfC sintered specimens. Five compositions are fabricated into bulk samples using spark plasma sintering (2173 K, 50 MPa, 10 min hold). Oxidation behavior of a subset of the compositions (100 vol% TaC, 80 vol% TaC + 20 vol% HfC, and 50 vol% TaC + 50 vol% HfC) is analyzed using an oxyacetylene torch for 60 s. The TaC–HfC samples exhibit a reduction in the oxide scale thickness and the mass ablation rate with increasing HfC content. The improved oxidation resistance can be attributed to the formation of a Hf6Ta2O17phase. This phase enhances oxidation resistance by reducing oxygen diffusion and serving as a protective layer for the unoxidized material. The superior oxidation resistance of TaC–HfC samples makes these materials strong contenders for the development of high‐speed flight coatings.more » « less
An official website of the United States government
