skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1911699

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract High‐temperature melting in mantle plumes produces voluminous eruptions that are often temporally coincident with mass extinctions. Paleocene Baffin Island lavas—products of early Iceland mantle plume activity—are exceptionally well characterized geochemically but have poorly constrained stratigraphy, geochronology, and eruptive tempos. To provide better geologic context, we measured seven stratigraphic sections of the volcanic deposits and collected paleomagnetic data from 38 sites in the lavas and underlying Cretaceous sediments (Quqaluit Fm.). The average paleomagnetic pole from this study does not overlap with the expected pole for a stable North American locality at 60 Ma, yet the data have sufficient dispersion to average out secular variation. After ruling out other possibilities, we find that the picrites were probably erupted during a polarity transition, over less than 5 kyr. If so, the average eruption interval was ∼67 years per flow for the thickest sequence of exposed lavas. We also calculate that the flood basalts had a minimum total volume of ∼176 km3(excluding submerged lavas in Baffin Bay). This implies a minimum eruption rate of ∼0.035 km3 yr−1, which is similar to rates found in West Greenland lavas but less than rates found in larger flood basalts. Despite this, the Baffin and West Greenland lavas temporally correlate with the “End C27n event” (a period of ∼2°C global warming) and may be its underlying cause. 
    more » « less
  2. null (Ed.)
    The fate of carbon subducted to mantle depths remains uncertain, yet strongly influences the distribution of terrestrial carbon on geologic timescales. Carbon fluxes into subduction zones are exceptionally high where downgoing plates contain thick sedimentary fans. This study uses volcano geochemistry to assess sedimentary carbon recycling in the high-flux Makran subduction zone, where the Arabian plate subducts northward beneath Eurasia. Based on strontium isotope geochemistry and 40Ar-39Ar geochronology, I show that a portion of the submarine Indus Fan entered the Makran trench, melted, and ascended as magmas that erupted in southern Afghanistan. The resulting volcano—composed primarily of carbonate minerals—formed at approximately 3.8 million years ago. The 87Sr/86Sr of the lavas indicates that their magmatic precursors derived from marine sediments deposited at 28.9 ± 1.4 Ma. This implies that sedimentary carbon subducted to and returned from mantle depths in less than 27 million years, indicating that magmas can efficiently recycle sedimentary carbon from subducting slabs to the overlying plate. 
    more » « less
  3. null (Ed.)