skip to main content


Search for: All records

Award ID contains: 1911994

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In species where offspring survival is highly variable relative to adult survival, such as bighorn sheep ( Ovis canadensis ), physiological indicators of maternal investment could clarify the functional mechanisms of life history trade-offs and serve as important predictors of population dynamics. From a management perspective, simple predictors of juvenile survival measured non-lethally from maternal samples could aid in identifying at-risk populations or individuals before significant mortality occurs. Blood biochemical parameters can offer low-cost insights into animal health and physiology, therefore we sought to develop a simple biochemical predictor of juvenile survival based on maternal blood samples. We measured biochemical indicators of energy balance in adult bighorn sheep at a single time point in January or February, and then monitored survival through August of the same year to assess how those measures related to survival of individual adults and their juvenile offspring. Juvenile survival was lower over the subsequent spring and summer when maternal adult serum beta-hydroxybutyric acid (β-HBA) concentration was high, indicating a negative energy balance in the mothers. However, serum β-HBA did not correlate with adult survival over the same period. Our findings suggest that even when maternal body condition is high, short-term caloric deficit may be sufficient trigger to decrease investment in offspring survival. This mechanism could protect adult females from investing heavily in juvenile survival when resources become too limited to support population growth. Our study suggests that β-HBA could be a powerful monitoring tool for bighorn sheep and other threatened ruminant populations under resource limitation. 
    more » « less
  2. Extensive research in well-studied animal models underscores the importance of commensal gastrointestinal (gut) microbes to animal physiology. Gut microbes have been shown to impact dietary digestion, mediate infection, and even modify behavior and cognition. Given the large physiological and pathophysiological contribution microbes provide their host, it is reasonable to assume that the vertebrate gut microbiome may also impact the fitness, health and ecology of wildlife. In accordance with this expectation, an increasing number of investigations have considered the role of the gut microbiome in wildlife ecology, health, and conservation. To help promote the development of this nascent field, we need to dissolve the technical barriers prohibitive to performing wildlife microbiome research. The present review discusses the 16S rRNA gene microbiome research landscape, clarifying best practices in microbiome data generation and analysis, with particular emphasis on unique situations that arise during wildlife investigations. Special consideration is given to topics relevant for microbiome wildlife research from sample collection to molecular techniques for data generation, to data analysis strategies. Our hope is that this article not only calls for greater integration of microbiome analyses into wildlife ecology and health studies but provides researchers with the technical framework needed to successfully conduct such investigations. 
    more » « less