skip to main content

Search for: All records

Award ID contains: 1912550

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Through numerical simulations of boson-star head-on collisions, we explore the quality of binary initial data obtained from the superposition of single-star spacetimes. Our results demonstrate that evolutions starting from a plain superposition of individual boosted boson-star spacetimes are vulnerable to significant unphysical artefacts. For equal-mass binaries, these difficulties can be overcome with a simple modification of the initial data suggested in Helferet al(2019Phys. Rev. D99044046) for collisions of oscillations. While we specifically consider massive complex scalar field boson star models of very high and low compactness, we conjecture that this vulnerability be also present in other kinds of exotic compact systems and hence needs to be addressed.

  2. Abstract

    We construct, for the first time, the time-domain gravitational wave strain waveform from the collapse of a strongly gravitating Abelian Higgs cosmic string loop in full general relativity. We show that the strain exhibits a large memory effect during merger, ending with a burst and the characteristic ringdown as a black hole is formed. Furthermore, we investigate the waveform and energy emitted as a function of string width, loop radius and string tension. We find that the mass normalized gravitational wave energy displays a strong dependence on the inverse of the string tensionEGW/M0∝ 1/, withEGW/M0O(1)%at the percent level, for the regime where≳ 10−3. Conversely, we show that the efficiency is only weakly dependent on the initial string width and initial loop radii. Using these results, we argue that gravitational wave production is dominated by kinematical instead of geometrical considerations.

  3. Free, publicly-accessible full text available June 1, 2023
  4. Free, publicly-accessible full text available March 1, 2023
  5. Free, publicly-accessible full text available March 1, 2023
  6. Abstract The science objectives of the LISA mission have been defined under the implicit assumption of a 4-years continuous data stream. Based on the performance of LISA Pathfinder, it is now expected that LISA will have a duty cycle of $$\approx 0.75$$ ≈ 0.75 , which would reduce the effective span of usable data to 3 years. This paper reports the results of a study by the LISA Science Group, which was charged with assessing the additional science return of increasing the mission lifetime. We explore various observational scenarios to assess the impact of mission duration on the main science objectives of the mission. We find that the science investigations most affected by mission duration concern the search for seed black holes at cosmic dawn, as well as the study of stellar-origin black holes and of their formation channels via multi-band and multi-messenger observations. We conclude that an extension to 6 years of mission operations is recommended.
    Free, publicly-accessible full text available January 1, 2023