skip to main content

Search for: All records

Award ID contains: 1912764

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Surface Enhancement of the IceTop air-shower array will include the addition of radio antennas and scintillator panels, co-located with the existing ice-Cherenkov tanks and covering an area of about 1 km 2 . Together, these will increase the sensitivity of the IceCube Neutrino Observatory to the electromagnetic and muonic components of cosmic-ray-induced air showers at the South Pole. The inclusion of the radio technique necessitates an expanded set of simulation and analysis tools to explore the radio-frequency emission from air showers in the 70 MHz to 350 MHz band. In this paper we describe the software modules thatmore »have been developed to work with time- and frequency-domain information within IceCube's existing software framework, IceTray, which is used by the entire IceCube collaboration. The software includes a method by which air-shower simulation, generated using CoREAS, can be reused via waveform interpolation, thus overcoming a significant computational hurdle in the field.« less
    Free, publicly-accessible full text available June 1, 2023
  2. Free, publicly-accessible full text available June 1, 2023
  3. We present a novel machine learning-based approach to generate fast-executing virtual radiofrequency quadrupole (RFQ) particle accelerators using surrogate modelling. These could potentially be used as on-line feedback tools during beam commissioning and operation, and to optimize the RFQ beam dynamics design prior to construction. Since surrogate models execute orders of magnitude faster than corresponding physics beam dynamics simulations using standard tools like PARMTEQM and RFQGen, the computational complexity of the multi-objective optimization problem reduces significantly. Ultimately, this presents a computationally inexpensive and time efficient method to perform sensitivity studies and an optimization of the crucial RFQ beam output parameters likemore »transmission and emittances. Two different methods of surrogate model creation (polynomial chaos expansion and neural networks) are discussed and the achieved model accuracy is evaluated for different study cases with gradually increasing complexity, ranging from a simple FODO cell example to the full RFQ optimization. We find that variations of the beam input Twiss parameters can be reproduced well. The prediction of the beam with respect to hardware changes, e.g., the electrode modulation, are challenging on the other hand. We discuss possible reasons for that and elucidate nevertheless existing benefits of the applied method to RFQ beam dynamics design.« less
    Free, publicly-accessible full text available April 25, 2023
  4. Free, publicly-accessible full text available March 1, 2023
  5. Free, publicly-accessible full text available March 1, 2023
  6. Abstract We present a measurement of the high-energy astrophysical muon–neutrino flux with the IceCube Neutrino Observatory. The measurement uses a high-purity selection of 650k neutrino-induced muon tracks from the northern celestial hemisphere, corresponding to 9.5 yr of experimental data. With respect to previous publications, the measurement is improved by the increased size of the event sample and the extended model testing beyond simple power-law hypotheses. An updated treatment of systematic uncertainties and atmospheric background fluxes has been implemented based on recent models. The best-fit single power-law parameterization for the astrophysical energy spectrum results in a normalization of ϕ @ 100more »TeV ν μ + ν ¯ μ = 1.44 − 0.26 + 0.25 × 10 − 18 GeV − 1 cm − 2 s − 1 sr − 1 and a spectral index γ SPL = 2.37 − 0.09 + 0.09 , constrained in the energy range from 15 TeV to 5 PeV. The model tests include a single power law with a spectral cutoff at high energies, a log-parabola model, several source-class-specific flux predictions from the literature, and a model-independent spectral unfolding. The data are consistent with a single power-law hypothesis, however, spectra with softening above one PeV are statistically more favorable at a two-sigma level.« less
    Free, publicly-accessible full text available March 1, 2023
  7. Abstract There is great need for high intensity proton beams from compact particle accelerators in particle physics, medical isotope production, and materials- and energy-research. To address this need, we present, for the first time, a design for a compact isochronous cyclotron that will be able to deliver 10 mA of 60 MeV protons—an order of magnitude higher than on-market compact cyclotrons and a factor four higher than research machines. A key breakthrough is that vortex motion is incorporated in the design of a cyclotron, leading to clean extraction. Beam losses on the septa of the electrostatic extraction channels stay below 120 Wmore »(40% below the required safety limit), while maintaining good beam quality. We present a set of highly accurate particle-in-cell simulations, and an uncertainty quantification of select beam input parameters using machine learning, showing the robustness of the design. This design can be utilized for beams for experiments in particle and nuclear physics, materials science and medical physics as well as for industrial applications.« less
    Free, publicly-accessible full text available February 1, 2023
  8. Abstract Ultraluminous infrared galaxies (ULIRGs) have infrared luminosities L IR ≥ 10 12 L ⊙ , making them the most luminous objects in the infrared sky. These dusty objects are generally powered by starbursts with star formation rates that exceed 100 M ⊙ yr −1 , possibly combined with a contribution from an active galactic nucleus. Such environments make ULIRGs plausible sources of astrophysical high-energy neutrinos, which can be observed by the IceCube Neutrino Observatory at the South Pole. We present a stacking search for high-energy neutrinos from a representative sample of 75 ULIRGs with redshift z ≤ 0.13 usingmore »7.5 yr of IceCube data. The results are consistent with a background-only observation, yielding upper limits on the neutrino flux from these 75 ULIRGs. For an unbroken E −2.5 power-law spectrum, we report an upper limit on the stacked flux Φ ν μ + ν ¯ μ 90 % = 3.24 × 10 − 14 TeV − 1 cm − 2 s − 1 ( E / 10 TeV ) − 2.5 at 90% confidence level. In addition, we constrain the contribution of the ULIRG source population to the observed diffuse astrophysical neutrino flux as well as model predictions.« less
    Free, publicly-accessible full text available February 1, 2023
  9. Free, publicly-accessible full text available February 1, 2023
  10. Free, publicly-accessible full text available October 1, 2022