skip to main content


Search for: All records

Award ID contains: 1912836

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The identification of charm jets is achieved at LHCb for data collected in 2015–2018 using a method based on the properties of displaced vertices reconstructed and matched with jets. The performance of this method is determined using a dijet calibration dataset recorded by the LHCb detector and selected such that the jets are unbiased in quantities used in the tagging algorithm. The charm-tagging efficiency is reported as a function of the transverse momentum of the jet. The measured efficiencies are compared to those obtained from simulation and found to be in good agreement. 
    more » « less
  2. Dark matter particles may interact with other dark matter particles via a new force mediated by a dark photon, A′, which would be the dark-sector analog to the ordinary photon of electromagnetism. The dark photon can obtain a highly suppressed mixing-induced coupling to the electromagnetic current, providing a portal through which dark photons can interact with ordinary matter. This review focuses on A′ scenarios that are potentially accessible to accelerator-based experiments. We summarize the existing constraints placed by such experiments on dark photons, highlight what could be observed in the near future, and discuss the major experimental challenges that must be overcome to improve sensitivities. 
    more » « less
  3. null (Ed.)
    A key challenge in searches for resonant new physics is that classifiers trained to enhance potential signals must not induce localized structures. Such structures could result in a false signal when the background is estimated from data using sideband methods. A variety of techniques have been developed to construct classifiers which are independent from the resonant feature (often a mass). Such strategies are sufficient to avoid localized structures, but are not necessary. We develop a new set of tools using a novel moment loss function (Moment Decomposition or MoDe) which relax the assumption of independence without creating structures in the background. By allowing classifiers to be more flexible, we enhance the sensitivity to new physics without compromising the fidelity of the background estimation. 
    more » « less
  4. null (Ed.)
    A bstract Searches are performed for a low-mass dimuon resonance, X , produced in proton-proton collisions at a center-of-mass energy of 13 TeV, using a data sample corresponding to an integrated luminosity of 5.1 fb − 1 and collected with the LHCb detector. The X bosons can either decay promptly or displaced from the proton-proton collision, where in both cases the requirements placed on the event and the assumptions made about the production mechanisms are kept as minimal as possible. The searches for promptly decaying X bosons explore the mass range from near the dimuon threshold up to 60 GeV, with nonnegligible X widths considered above 20 GeV. The searches for displaced X → μ + μ − decays consider masses up to 3 GeV. None of the searches finds evidence for a signal and 90% confidence-level exclusion limits are placed on the X → μ + μ − cross sections, each with minimal model dependence. In addition, these results are used to place world-leading constraints on GeV-scale bosons in the two-Higgs-doublet and hidden-valley scenarios. 
    more » « less