skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1913016

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper presents the enriched Galerkin discretization for modeling fluid flow in fractured porous media using the mixed-dimensional approach. The proposed method has been tested against published benchmarks. Since fracture and porous media discontinuities can significantly influence single- and multi-phase fluid flow, the heterogeneous and anisotropic matrix permeability setting is utilized to assess the enriched Galerkin performance in handling the discontinuity within the matrix domain and between the matrix and fracture domains. Our results illustrate that the enriched Galerkin method has the same advantages as the discontinuous Galerkin method; for example, it conserves local and global fluid mass, captures the pressure discontinuity, and provides the optimal error convergence rate. However, the enriched Galerkin method requires much fewer degrees of freedom than the discontinuous Galerkin method in its classical form. The pressure solutions produced by both methods are similar regardless of the conductive or non-conductive fractures or heterogeneity in matrix permeability. This analysis shows that the enriched Galerkin scheme reduces the computational costs while offering the same accuracy as the discontinuous Galerkin so that it can be applied for large-scale flow problems. Furthermore, the results of a time-dependent problem for a three-dimensional geometry reveal the value of correctly capturing the discontinuities as barriers or highly-conductive fractures. 
    more » « less
  2. We present an optimal a priori error estimates of the elliptic problems with Dirac sources away from the singular point using discontinuous and enriched Galerkin finite element methods. It is widely shown that the finite element solutions for elliptic problems with Dirac source terms converge sub-optimally in classical norms on uniform meshes. However, here we employ inductive estimates and norm to obtain the optimal order by excluding the small ball regions with the singularities for both two and three dimensional domains. Numerical examples are presented to substantiate our theoretical results. 
    more » « less