skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1915193

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The actomyosin cytoskeleton enables cells to resist deformation, crawl, change their shape and sense their surroundings. Despite decades of study, how its molecular constituents can assemble together to form a network with the observed mechanics of cells remains poorly understood. Recently, it has been shown that the actomyosin cortex of quiescent cells can undergo frequent, abrupt reconfigurations and displacements, called cytoquakes. Notably, such fluctuations are not predicted by current physical models of actomyosin networks, and their prevalence across cell types and mechanical environments has not previously been studied. Using micropost array detectors, we have performed high-resolution measurements of the dynamic mechanical fluctuations of cells’ actomyosin cortex and stress fiber networks. This reveals cortical dynamics dominated by cytoquakes—intermittent events with a fat-tailed distribution of displacements, sometimes spanning microposts separated by 4 μm, in all cell types studied. These included 3T3 fibroblasts, where cytoquakes persisted over substrate stiffnesses spanning the tissue-relevant range of 4.3 kPa–17 kPa, and primary neonatal rat cardiac fibroblasts and myofibroblasts, human embryonic kidney cells and human bone osteosarcoma epithelial (U2OS) cells, where cytoquakes were observed on substrates in the same stiffness range. Overall, these findings suggest that the cortex self-organizes into a marginally stable mechanical state whose physics may contribute to cell mechanical properties, active behavior and mechanosensing.

     
    more » « less
  2. Abstract

    The dynamics of the cellular actomyosin cytoskeleton are crucial to many aspects of cellular function. Here, we describe techniques that employ active micropost array detectors (AMPADs) to measure cytoskeletal rheology and mechanical force fluctuations. The AMPADS are arrays of flexible poly(dimethylsiloxane) (PDMS) microposts with magnetic nanowires embedded in a subset of microposts to enable actuation of those posts via an externally applied magnetic field. Techniques are described to track the magnetic microposts’ motion with nanometer precision at up to 100 video frames per second to measure the local cellular rheology at well‐defined positions. Application of these high‐precision tracking techniques to the full array of microposts in contact with a cell also enables mapping of the cytoskeletal mechanical fluctuation dynamics with high spatial and temporal resolution. This article describes (1) the fabrication of magnetic micropost arrays, (2) measurement protocols for both local rheology and cytoskeletal force fluctuation mapping, and (3) special‐purpose software routines to reduce and analyze these data. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.

    Basic Protocol 1: Fabrication of magnetic micropost arrays

    Basic Protocol 2: Data acquisition for cellular force fluctuations on non‐magnetic micropost arrays

    Basic Protocol 3: Data acquisition for local cellular rheology measurements with magnetic microposts

    Basic Protocol 4: Data reduction: determining microposts’ motion

    Basic Protocol 5: Data analysis: determining local rheology from magnetic microposts

    Basic Protocol 6: Data analysis for force fluctuation measurements

    Support Protocol 1: Fabrication of magnetic Ni nanowires by electrodeposition

    Support Protocol 2: Configuring Streampix for magnetic rheology measurements

     
    more » « less
  3. Many soft and biological materials display so-called ‘soft glassy’ dynamics; their constituents undergo anomalous random motions and complex cooperative rearrangements. A recent simulation model of one soft glassy material, a coarsening foam, suggested that the random motions of its bubbles are due to the system configuration moving over a fractal energy landscape in high-dimensional space. Here we show that the salient geometrical features of such high-dimensional fractal landscapes can be explored and reliably quantified, using empirical trajectory data from many degrees of freedom, in a model-free manner. For a mayonnaise-like dense emulsion, analysis of the observed trajectories of oil droplets quantitatively reproduces the high-dimensional fractal geometry of the configuration path and its associated local energy minima generated using a computational model. That geometry in turn drives the droplets’ complex random motion observed in real space. Our results indicate that experimental studies can elucidate whether the similar dynamics in different soft and biological materials may also be due to fractal landscape dynamics. 
    more » « less