Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 13, 2025
-
Eukaryotic cells can polarize and migrate in response to electric fields via “galvanotaxis,” which aids wound healing. Experimental evidence suggests cells sense electric fields via molecules on the cell's surface redistributing via electrophoresis and electroosmosis, though the sensing species has not yet been conclusively identified. We develop a model that links sensor redistribution and galvanotaxis using maximum likelihood estimation. Our model predicts a single universal curve for how galvanotactic directionality depends on field strength. We can collapse measurements of galvanotaxis in keratocytes, neural crest cells, and granulocytes to this curve, suggesting that stochasticity due to the finite number of sensors may limit galvanotactic accuracy. We find cells can achieve experimentally observed directionalities with either a few (~100) highly polarized sensors or many (~10,000) sensors with an ∼6–10% change in concentration across the cell. We also identify additional signatures of galvanotaxis via sensor redistribution, including the presence of a tradeoff between accuracy and variance in cells being controlled by rapidly switching fields. Our approach shows how the physics of noise at the molecular scale can limit cell-scale galvanotaxis, providing important constraints on sensor properties and allowing for new tests to determine the specific molecules underlying galvanotaxis.more » « less
-
Collective movement and organization of cell monolayers are important for wound healing and tissue development. Recent experiments highlighted the importance of liquid crystal order within these layers, suggesting that +1 topological defects have a role in organizing tissue morphogenesis. We study fibroblast organization, motion, and proliferation on a substrate with micron-sized ridges that induce +1 and −1 topological defects using simulation and experiment. We model cells as self-propelled deformable ellipses that interact via a Gay–Berne potential. Unlike earlier work on other cell types, we see that density variation near defects is not explained by collective migration. We propose instead that fibroblasts have different division rates depending on their area and aspect ratio. This model captures key features of our previous experiments: the alignment quality worsens at high cell density and, at the center of the +1 defects, cells can adopt either highly anisotropic or primarily isotropic morphologies. Experiments performed with different ridge heights confirm a prediction of this model: Suppressing migration across ridges promotes higher cell density at the +1 defect. Our work enables a mechanism for tissue patterning using topological defects without relying on cell migration.more » « less
-
ABSTRACT Branched epithelial networks are generated through an iterative process of elongation and bifurcation. We sought to understand bifurcation of the mammary epithelium. To visualize this process, we utilized three-dimensional (3D) organotypic culture and time-lapse confocal microscopy. We tracked cell migration during bifurcation and observed local reductions in cell speed at the nascent bifurcation cleft. This effect was proximity dependent, as individual cells approaching the cleft reduced speed, whereas cells exiting the cleft increased speed. As the cells slow down, they orient both migration and protrusions towards the nascent cleft, while cells in the adjacent branches orient towards the elongating tips. We next tested the hypothesis that TGF-β signaling controls mammary branching by regulating cell migration. We first validated that addition of TGF-β1 (TGFB1) protein increased cleft number, whereas inhibition of TGF-β signaling reduced cleft number. Then, consistent with our hypothesis, we observed that pharmacological inhibition of TGF-β1 signaling acutely decreased epithelial migration speed. Our data suggest a model for mammary epithelial bifurcation in which TGF-β signaling regulates cell migration to determine the local sites of bifurcation and the global pattern of the tubular network.more » « less
-
Contact inhibition of locomotion (CIL), in which cells repolarize and move away from contact, is now established as a fundamental driving force in development, repair, and disease biology. Much of what we know of CIL stems from studies on two-dimensional (2D) substrates that do not provide an essential biophysical cue—the curvature of extracellular matrix fibers. We discover rules controlling outcomes of cell–cell collisions on suspended nanofibers and show them to be profoundly different from the stereotyped CIL behavior on 2D substrates. Two approaching cells attached to a single fiber do not repolarize upon contact but rather usually migrate past one another. Fiber geometry modulates this behavior; when cells attach to two fibers, reducing their freedom to reorient, only one cell repolarizes on contact, leading to the cell pair migrating as a single unit. CIL outcomes also change when one cell has recently divided and moves with high speed—cells more frequently walk past each other. Our computational model of CIL in fiber geometries reproduces the core qualitative results of the experiments robustly to model parameters. Our model shows that the increased speed of postdivision cells may be sufficient to explain their increased walk-past rate. We also identify cell–cell adhesion as a key mediator of collision outcomes. Our results suggest that characterizing cell–cell interactions on flat substrates, channels, or micropatterns is not sufficient to predict interactions in a matrix—the geometry of the fiber can generate entirely new behaviors.more » « less
An official website of the United States government
