skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 12 until 2:00 AM ET on Saturday, July 13 due to maintenance. We apologize for the inconvenience.

Search for: All records

Award ID contains: 1915599

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 1, 2025
  2. Free, publicly-accessible full text available July 24, 2024
  3. Physiological and kinematic signals from humans are often used for monitoring health. Several processes of interest (e.g., cardiac and respiratory processes, and locomotion) demonstrate periodicity. Training models for inference on these signals (e.g., detection of anomalies, and extraction of biomarkers) require large amounts of data to capture their variability, which are not readily available. This hinders the performance of complex inference models. In this work, we introduce a methodology for improving inference on such signals by incorporating phase-based interpretability and other inference tasks into a multi-task framework applied to a generative model. For this purpose, we utilize phase information as a regularization term and as an input to the model and introduce an interpretable unit in a neural network, which imposes an interpretable structure on the model. This imposition helps us in the smooth generation of periodic signals that can aid in data augmentation tasks. We demonstrate the impact of our framework on improving the overall inference performance on ECG signals and inertial signals from gait locomotion. 
    more » « less
  4. Body-rocking is an undesired stereotypical motor movement performed by some individuals, and its detection is essential for self-awareness and habit change. We envision a pipeline that includes inertial wearable sensors and a real-time detection system for notifying the user so that they are aware of their body-rocking behavior. For this task, similarities of body rocking to other non-related repetitive activities may cause false detections which prevent continuous engagement, leading to alarm fatigue. We present a pipeline using Bayesian Neural Networks with uncertainty quantification for jointly reducing false positives and providing accurate detection. We show that increasing model capacity does not consistently yield higher performance by itself, while pairing it with the Bayesian approach does yield significant improvements. Disparities in uncertainty quantification are better quantified by calibrating them using deep neural networks. We show that the calibrated probabilities are effective quality indicators of reliable predictions. Altogether, we show that our approach provides additional insights on the role of Bayesian techniques in deep learning as well as aids in accurate body-rocking detection, improving our prior work on this subject. 
    more » « less
  5. Cough detection can provide an important marker to monitor chronic respiratory conditions. However, manual techniques which require human expertise to count coughs are both expensive and time-consuming. Recent Automatic Cough Detection Algorithms (ACDAs) have shown promise to meet clinical monitoring requirements, but only in recent years they have made their way to non-clinical settings due to the required portability of sensing technologies and the extended duration of data recording. More precisely, these ACDAs operate at high sampling frequencies, which leads to high power consumption and computing requirements, making these difficult to implement on a wearable device. Additionally, reproducibility of their performance is essential. Unfortunately, as the majority of ACDAs were developed using private clinical data, it is difficult to reproduce their results. We, hereby, present an ACDA that meets clinical monitoring requirements and reliably operates at a low sampling frequency. This ACDA is implemented using a convolutional neural network (CNN), and publicly available data. It achieves a sensitivity of 92.7%, a specificity of 92.3%, and an accuracy of 92.5% using a sampling frequency of just 750 Hz. We also show that a low sampling frequency allows us to preserve patients’ privacy by obfuscating their speech, and we analyze the trade-off between speech obfuscation for privacy and cough detection accuracy. Clinical relevance—This paper presents a new cough detection technique and preliminary analysis on the trade-off between detection accuracy and obfuscation of speech for privacy. These findings indicate that, using a publicly available dataset, we can sample signals at 750 Hz while still maintaining a sensitivity above 90%, suggested to be sufficient for clinical monitoring [1]. 
    more » « less
  6. Longitudinal fetal health monitoring is essential for high-risk pregnancies. Heart rate and heart rate variability are prime indicators of fetal health. In this work, we implemented two neural network architectures for heartbeat detection on a set of fetal phonocardiogram signals captured using fetal Doppler and a digital stethoscope. We test the efficacy of these networks using the raw signals and the hand-crafted energy from the signal. The results show a Convolutional Neural Network is the most efficient at identifying the S1 waveforms in a heartbeat, and its performance is improved when using the energy of the Doppler signals. We further discuss issues, such as low Signal-to-Noise Ratios (SNR), present in the training of a model based on the stethoscope signals. Finally, we show that we can improve the SNR, and subsequently the performance of the stethoscope, by matching the energy from the stethoscope to that of the Doppler signal. 
    more » « less
  7. null (Ed.)
    Multi-modal wearable sensors monitoring physiology and environment simultaneously would offer a great promise to manage respiratory health, especially for asthmatic patients. In this study, we present a preliminary investigation of the correlation between ozone exposure, heart rate, heart rate variability, and lung function. As the first step, we tested the effect of low-level ozone exposure in a sample size of four healthy individuals. Test subjects underwent controlled exposure from 0.06 to 0.08 ppm of ozone and filtered air on two separate exposure days. Our results indicate an increment in mean heart rate in three out of four test subjects when exposed to ozone. We have also observed that changes in mean heart rate has a positive correlation with changes in lung function and a negative correlation with changes in neutrophil count. These results provide a baseline understanding of healthy subjects as a control group. 
    more » « less