Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A bstract We study dark matter freeze-in scenarios where the mass of the mediator particle that couples dark matter to the Standard Model is larger than the reheat temperature, T RH , in the early Universe. In such setups, the standard approach is to work with an effective field theory (EFT) where the mediator is integrated out. We examine the validity of this approach in various generic s- and t-channel mediator frameworks. We find that the EFT approach breaks down when the mediator mass is between one to two orders of magnitude larger than T RH due to various effects such as s-channel resonance, a small thermally-suppressed abundance of the mediator, or decays of Standard Model particles through loops induced by the mediator. This highlights the necessity of including these contributions in such dark matter freeze-in studies. We also discuss the collider phenomenology of the heavy mediators, which is qualitatively different from standard freeze-in scenarios. We highlight that, due to the low T RH , the Standard Model-dark matter coupling in these scenarios can be relatively larger than in standard freeze-in scenarios, improving the testability prospects of these setups.more » « less
-
A bstract We present a supersymmetric extension of the Standard Model in which the new physics contributions to the anomalous magnetic moment of the muon can be more than an order of magnitude larger than in the minimal supersymmetric Standard Model. The extended electroweak symmetry breaking sector of the model can consistently accommodate Higgs bosons and Higgsinos with O (1) couplings to muons. We find that sleptons with masses in the multi-TeV range can comfortably explain the recently confirmed discrepancy in the anomalous magnetic moment of the muon. We discuss additional phenomenological aspects of the model, including its effects on tau flavor changing decays.more » « less
-
null (Ed.)A bstract The proposed DarkQuest beam dump experiment, a modest upgrade to the existing SeaQuest/SpinQuest experiment, has great potential for uncovering new physics within a dark sector. We explore both the near-term and long-term prospects for observing two distinct, highly-motivated hidden sector benchmark models: heavy neutral leptons and Higgs-mixed scalars. We comprehensively examine the particle production and detector acceptance at DarkQuest, including an updated treatment of meson production, and light scalar production through both bremsstrahlung and gluon-gluon fusion. In both benchmark models, DarkQuest will provide an opportunity to probe previously inaccessible interesting regions of parameter space on a fairly short timescale when compared to other proposed experiments.more » « less
-
null (Ed.)A bstract The two kaon factories, KOTO and NA62, are at the cutting edge of the intensity frontier, with an unprecedented numbers of long lived and charged Kaons, ∼ 10 13 , being measured and analyzed. These experiments have currently a unique opportunity to search for dark sectors. In this paper, we demonstrate that searches done at KOTO and NA62 are complementary, both probing uncharted territories. We consider two qualitatively different physics cases. In the first, we analyze models of axion-like-particles (ALP) which couple to gluons or electroweak gauge bosons. In the second, we introduce a model based on an approximate strange flavor symmetry that leads to a strong violation of the Grossman-Nir bound. For the first scenario, we design a new search strategy for the KOTO experiment, K L → π 0 a → 4 γ . Its expected sensitivity on the branching ratio is at the level of 10 − 9 . This demonstrates the great potential of KOTO as a discovery machine. In addition, we revisit other bounds on ALPs from Kaon factories, highlighting the main sources of theoretical uncertainty, and collider experiments, and show new projections. For the second scenario, we show that the model may be compatible with the preliminary analysis of the KOTO-data that shows a hint for New Physics.more » « less
An official website of the United States government

Full Text Available