Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Shore ice is an important facet of cold‐climate coastal geomorphology yet is generally understudied in comparison to other aspects such as nearshore hydrodynamics. Climate change is resulting in more dynamic shore ice regimes (i.e., shortened ice season and multiple freeze–thaw cycles); thus, a clear understanding of the role of shore ice in coastal geomorphic evolution is needed. The presence of shore ice is generally thought to provide the coast a protective buffer from storm waves though some studies have indicated enhanced nearshore erosion and sediment transport associated with ice development. This is particularly apparent during the breakup phase of shore ice as sediment can be scoured from the bed, deposited in place, or transported offshore. Given this, understanding the mechanics of shore ice breakup is critical. This study documents the first combined field and laboratory evaluation of the physical conditions leading to shore ice breakup, detailing the complex interplay between thermal and mechanical processes in ice deterioration. Through a wave tank experiment as well as field observations, wave impacts alone are shown to be unlikely to cause breakup of shore ice and thermal weakening is required. This has important implications both for predicting when ice will break up as well as for identifying potential nearshore sediment transport pathways. If ice breaks up entirely from thermal degradation, then sediment is likely to be deposited in place, whereas if ice breaks up from a combination of thermal degradation and wave impact, then sediment can be redistributed across the shoreface. Monitoring of meteorological conditions during ice breakup can likely be used as a first‐order predictor of geomorphic changes resulting from shore ice deterioration.more » « less
-
null (Ed.)Coastal storms are an important driver of geomorphic change along Great Lakes shorelines. While there is abundant anecdotal evidence for storm impacts in the region, only a handful of studies over the last few decades have quantified them and addressed system morphodynamics. Annual to seasonal lake-level fluctuations and declining winter-ice covers also influence coastal response to storms, yet relationships between hydrodynamics and geomorphology are poorly constrained. Given this, the Great Lakes region lags behind marine coasts in terms of predictive modeling of future coastal change, which is a necessary tool for proactive coastal management. To help close this gap, we conducted a year-long study at a sandy beach-dune system along the western shore of Lake Michigan, evaluating storm impacts under conditions of extremely high water level and absent shorefast ice. Drone-derived beach and dune topography data were used to link geomorphic changes to specific environmental conditions. High water levels throughout the year of study facilitated erosion during relatively minor wave events, enhancing the vulnerability of the system to a large storm in January 2020. This event occurred with no shorefast ice present and anomalously high winter water levels, resulting in widespread erosion and overwash. This resulted in 20% of the total accretion and 66% of the erosion documented at the site over the entire year. Our study highlights the importance of both antecedent and present conditions in determining Great Lakes shoreline vulnerability to storm impacts.more » « less
An official website of the United States government
