- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Fithian, William (2)
-
Hung, Kenneth (1)
-
Lei, Lihua (1)
-
Ramdas, Aaditya (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
null (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Lei, Lihua; Ramdas, Aaditya; Fithian, William (, Biometrika)null (Ed.)Summary We propose a general framework based on selectively traversed accumulation rules for interactive multiple testing with generic structural constraints on the rejection set. It combines accumulation tests from ordered multiple testing with data-carving ideas from post-selection inference, allowing highly flexible adaptation to generic structural information. Our procedure defines an interactive protocol for gradually pruning a candidate rejection set, beginning with the set of all hypotheses and shrinking the set with each step. By restricting the information at each step via a technique we call masking, our protocol enables interaction while controlling the false discovery rate in finite samples for any data-adaptive update rule that the analyst may choose. We suggest update rules for a variety of applications with complex structural constraints, demonstrate that selectively traversed accumulation rules perform well in problems ranging from convex region detection to false discovery rate control on directed acyclic graphs, and show how to extend the framework to regression problems where knockoff statistics are available in lieu of $$p$$-values.more » « less
An official website of the United States government
