skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1916245

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. For the last two decades, high-dimensional data and methods have proliferated throughout the literature. Yet, the classical technique of linear regression has not lost its usefulness in applications. In fact, many high-dimensional estimation techniques can be seen as variable selection that leads to a smaller set of variables (a “submodel”) where classical linear regression applies. We analyze linear regression estimators resulting from model selection by proving estimation error and linear representation bounds uniformly over sets of submodels. Based on deterministic inequalities, our results provide “good” rates when applied to both independent and dependent data. These results are useful in meaningfully interpreting the linear regression estimator obtained after exploring and reducing the variables and also in justifying post-model-selection inference. All results are derived under no model assumptions and are nonasymptotic in nature. 
    more » « less