skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1916467

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Systems with both quantitative and qualitative responses are widely encountered in many applications. Design of experiment methods are needed when experiments are conducted to study such systems. Classic experimental design methods are unsuitable here because they often focus on one type of response. In this paper, we develop a Bayesian D-optimal design method for experiments with one continuous and one binary response. Both noninformative and conjugate informative prior distributions on the unknown parameters are considered. The proposed design criterion has meaningful interpretations regarding the D-optimality for the models for both types of responses. An efficient point-exchange search algorithm is developed to construct the local D-optimal designs for given parameter values. Global D-optimal designs are obtained by accumulating the frequencies of the design points in local D-optimal designs, where the parameters are sampled from the prior distributions. The performances of the proposed methods are evaluated through two examples. 
    more » « less
  2. The problem of sampling constrained continuous distributions has frequently appeared in many machine/statistical learning models. Many Markov Chain Monte Carlo (MCMC) sampling methods have been adapted to handle different types of constraints on random variables. Among these methods, Hamilton Monte Carlo (HMC) and the related approaches have shown significant advantages in terms of computational efficiency compared with other counterparts. In this article, we first review HMC and some extended sampling methods, and then we concretely explain three constrained HMC-based sampling methods, reflection, reformulation, and spherical HMC. For illustration, we apply these methods to solve three well-known constrained sampling problems, truncated multivariate normal distributions, Bayesian regularized regression, and nonparametric density estimation. In this review, we also connect constrained sampling with another similar problem in the statistical design of experiments with constrained design space. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)