skip to main content


Search for: All records

Award ID contains: 1916707

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Highly effective electromagnetic (EM) wave absorber materials with strong reflection loss (RL) and a wide absorption bandwidth (EBW) in gigahertz (GHz) frequencies are crucial for advanced wireless applications and portable electronics. Traditional microwave absorbers lack magnetic loss and struggle with impedance matching, while ferrites are stable, exhibit excellent magnetic and dielectric losses, and offer better impedance matching. However, achieving the desired EBW in ferrites remains a challenge, necessitating further composition design. In this study, impedance matching is successfully enhanced and EBW in Ni–Zn ferrite is broadened by successive doping with Mn and Co , without incorporation of any polymer filler. It is found that Ni0.4Co0.1Zn0.5Fe1.9Mn0.1O4material exhibits exceptional EM wave absorption, with a maximum RL of −48.7 dB. It also featured a significant EBW of 10.8 GHz, maintaining a 90% absorption rate (RL < −10 dB) for a thickness of 4.5 mm. These outstanding properties result from substantial magnetic losses and favorable impedance matching. These findings represent a significant step forward in the development of microwave absorber materials, addressing EM wave pollution concerns within GHz frequencies, including the frequency band used in popular 5G technology.

     
    more » « less
  2. Abstract

    Halide perovskites show ubiquitous presences in growing fields at both fundamental and applied levels. Discovery, investigation, and application of innovative perovskites are heavily dependent on the synthetic methodology in terms of time-/yield-/effort-/energy- efficiency. Conventional wet chemistry method provides the easiness for growing thin film samples, but represents as an inefficient way for bulk crystal synthesis. To overcome these, here we report a universal solid state-based route for synthesizing high-quality perovskites, by means of simultaneously applying both electric and mechanical stress fields during the synthesis, i.e., the electrical and mechanical field-assisted sintering technique. We employ various perovskite compositions and arbitrary geometric designs for demonstration in this report, and establish such synthetic route with uniqueness of ultrahigh yield, fast processing and solvent-free nature, along with bulk products of exceptional quality approaching to single crystals. We exemplify the applications of the as-synthesized perovskites in photodetection and thermoelectric as well as other potentials to open extra chapters for future technical development.

     
    more » « less
  3. A dual energy harvester based upon the magnetoelectric mechanism is reported. The harvester can generate ∼52.1 mW under simultaneously applied magnetic field and ultrasound in porcine tissue operating under safety limits.

     
    more » « less
    Free, publicly-accessible full text available March 19, 2025
  4. Future advancements in three-dimensional (3D) electronics require robust thermal management methodology. Thermoelectric coolers (TECs) are reliable and solid-state heat pumping devices with high cooling capacity that can meet the requirements of emerging 3D microelectronic devices. Here, we first provide the design of TECs for electronics cooling using a computational model and then experimentally validate the main predictions. Key device parameters such as device thickness, leg density, and contact resistance were studied to understand their influence on the performance of TECs. Our results show that it is possible to achieve high cooling power density through optimization of TE leg height and packing density. Scaling of TECs is shown to provide ultra-high cooling power density. 
    more » « less