skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1917048

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Deformation in transform systems is accommodated by discrete fault slip and distributed off‐fault deformation. Here, we consider how a change in slip behavior along a fault can influence the distribution between on‐ and off‐fault deformation. We use a physical experiment to simplify the geometry, material properties, boundary conditions, and slip history along a strike‐slip fault to directly observe patterns of off‐fault deformation. We document deformation of a silicone slab on a simple shear apparatus using particle image velocimetry (2D) and photogrammetry (3D). The experimental results show regions of topographic highs and lows on either side of the slip transition that grow, evolve, and are displaced with progressive strain. The experimental dilatation field shares similarities with strain fields in central California along the San Andreas fault, which suggests that a change in slip behavior may explain some of the real‐world patterns in short‐ and long‐term deformation. 
    more » « less