skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1917117

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. Free, publicly-accessible full text available January 1, 2026
  3. Free, publicly-accessible full text available January 1, 2026
  4. Free, publicly-accessible full text available January 1, 2026
  5. Although machine learning-based anti-phishing detectors have provided promising results in phishing website detection, they remain vulnerable to evasion attacks. The Machine Learning Security Evasion Competition 2022 (MLSEC 2022) provides researchers and practitioners with the opportunity to deploy evasion attacks against anti-phishing machine learning models in real-world settings. In this field note, we share our experience participating in MLSEC 2022. We manipulated the source code of ten phishing HTML pages provided by the competition using obfuscation techniques to evade anti-phishing models. Our evasion attacks employing a benign overlap strategy achieved third place in the competition with 46 out of a potential 80 points. The results of our MLSEC 2022 performance can provide valuable insights for research seeking to robustify machine learning-based anti-phishing detectors. 
    more » « less
  6. The rapid proliferation of complex information systems has been met by an ever-increasing quantity of exploits that can cause irreparable cyber breaches. To mitigate these cyber threats, academia and industry have placed a significant focus on proactively identifying and labeling exploits developed by the international hacker community. However, prevailing approaches for labeling exploits in hacker forums do not leverage metadata from exploit darknet markets or public exploit repositories to enhance labeling performance. In this study, we adopted the computational design science paradigm to develop a novel information technology artifact, the deep transfer learning exploit labeler (DTL-EL). DTL-EL incorporates a pre-initialization design, multi-layer deep transfer learning (DTL), and a self-attention mechanism to automatically label exploits in hacker forums. We rigorously evaluated the proposed DTL-EL against state-of-the-art non-DTL benchmark methods based in classical machine learning and deep learning. Results suggest that the proposed DTL-EL significantly outperforms benchmark methods based on accuracy, precision, recall, and F1-score. Our proposed DTL-EL framework provides important practical implications for key stakeholders such as cybersecurity managers, analysts, and educators. 
    more » « less