skip to main content


Search for: All records

Award ID contains: 1918207

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2024
  2. We generalize the area-law violating models of Fredkin and Motzkin spin chains into two dimensions by building quantum six- and nineteen-vertex models with correlated interactions. The Hamiltonian is frustration free, and its projectors generate ergodic dynamics within the subspace of height configuration that are non negative. The ground state is a volume- and color-weighted superposition of classical bi-color vertex configurations with non-negative heights in the bulk and zero height on the boundary. The entanglement entropy between subsystems has a phase transition as the q q -deformation parameter is tuned, which is shown to be robust in the presence of an external field acting on the color degree of freedom. The ground state undergoes a quantum phase transition between area- and volume-law entanglement phases with a critical point where entanglement entropy scales as a function L\log L L log L of the linear system size L L . Intermediate power law scalings between L\log L L log L and L^2 L 2 can be achieved with an inhomogeneous deformation parameter that approaches 1 at different rates in the thermodynamic limit. For the q>1 q > 1 phase, we construct a variational wave function that establishes an upper bound on the spectral gap that scales as q^{-L^3/8} q − L 3 / 8 . 
    more » « less
  3. We explore how interactions can facilitate classical like dynamics in models with sequentially activated hopping. Specifically, we add local and short range interaction terms to the Hamiltonian and ask for conditions ensuring the evolution acts as a permutation on initial local number Fock states. We show that at certain values of hopping and interactions, determined by a set of Diophantine equations, such evolution can be realized. When only a subset of the Diophantine equations is satisfied the Hilbert space can be fragmented into frozen states, states obeying cellular automata like evolution, and subspaces where evolution mixes Fock states and is associated with eigenstates exhibiting high entanglement entropy and level repulsion. 
    more » « less
  4. The study of low-dimensional quantum systems has proven to be a particularly fertile field for discovering novel types of quantum matter. When studied numerically, low-energy states of low-dimensional quantum systems are often approximated via a tensor-network description. The tensor network's utility in studying short range correlated states in 1D have been thoroughly investigated, with numerous examples where the treatment is essentially exact. Yet, despite the large number of works investigating these networks and their relations to physical models, examples of exact correspondence between the ground state of a quantum critical system and an appropriate scale-invariant tensor network have eluded us so far. Here we show that the features of the quantum-critical Motzkin model can be faithfully captured by an analytic tensor network that exactly represents the ground state of the physical Hamiltonian. In particular, our network offers a two-dimensional representation of this state by a correspondence between walks and a type of tiling of a square lattice. We discuss connections to renormalization and holography. 
    more » « less