- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Khatami, Ehsan (3)
-
Bakr, Waseem S. (1)
-
Batrouni, G. G. (1)
-
Bryant, Garnett (1)
-
Carrasquilla, Juan Felipe (1)
-
Costa, N. C. (1)
-
Fei, Fan (1)
-
Guardado-Sanchez, Elmer (1)
-
Kashid, Ranjit (1)
-
Khatami, E. (1)
-
Namboodiri, Pradeep (1)
-
Park, Jacob (1)
-
Rigosi, Albert F. (1)
-
Scalettar, R. T. (1)
-
Scalettar, Richard T. (1)
-
Silver, Richard (1)
-
Spar, Benjamin M. (1)
-
Wang, Xiqiao (1)
-
Wyrick, Jonathan (1)
-
Xiao, B. (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The Hubbard model is an essential tool for understanding many-body physics in condensed matter systems. Artificial lattices of dopants in silicon are a promising method for the analog quantum simulation of extended Fermi-Hubbard Hamiltonians in the strong interaction regime. However, complex atom-based device fabrication requirements have meant emulating a tunable two-dimensional Fermi-Hubbard Hamiltonian in silicon has not been achieved. Here, we fabricate 3 × 3 arrays of single/few-dopant quantum dots with finite disorder and demonstrate tuning of the electron ensemble using gates and probe the many-body states using quantum transport measurements. By controlling the lattice constants, we tune the hopping amplitude and long-range interactions and observe the finite-size analogue of a transition from metallic to Mott insulating behavior. We simulate thermally activated hopping and Hubbard band formation using increased temperatures. As atomically precise fabrication continues to improve, these results enable a new class of engineered artificial lattices to simulate interactive fermionic models.more » « less
-
Park, Jacob; Khatami, Ehsan (, Physical Review B)
-
Xiao, B.; Costa, N. C.; Khatami, E.; Batrouni, G. G.; Scalettar, R. T. (, Physical Review B)
-
Khatami, Ehsan; Guardado-Sanchez, Elmer; Spar, Benjamin M.; Carrasquilla, Juan Felipe; Bakr, Waseem S.; Scalettar, Richard T. (, Physical Review A)null (Ed.)