skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1919197

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2024
  2. Free, publicly-accessible full text available June 21, 2024
  3. Free, publicly-accessible full text available May 8, 2024
  4. Free, publicly-accessible full text available May 1, 2024
  5. Free, publicly-accessible full text available March 25, 2024
  6. Free, publicly-accessible full text available February 17, 2024
  7. Free, publicly-accessible full text available January 27, 2024
  8. Singh, Gagandeep ; Urban, Caterina (Ed.)
    Constraint-based program synthesis techniques have been widely used in numerous settings. However, synthesizing programs that use libraries remains a major challenge. To handle complex or black-box libraries, the state of the art is to provide carefully crafted mocks or models to the synthesizer, requiring extra manual work. We address this challenge by proposing TOSHOKAN, a new synthesis framework as an alternative approach in which library-using programs can be generated without any user-provided artifacts at the cost of moderate performance overhead. The framework extends the classic counterexample-guided synthesis framework with a bootstrapping, log-based library model. The model collects input-output samples from running failed candidate programs on witness inputs. We prove that the framework is sound when a sound, bounded verifier is available, and also complete if the underlying synthesizer and verifier promise to produce minimal outputs. We implement and incorporate the framework to JSKETCH, a Java sketching tool. Experiments show that TOSHOKAN can successfully synthesize programs that use a variety of libraries, ranging from mathematical functions to data structures. Comparing to state-of-the-art synthesis algorithms which use mocks or models, TOSHOKAN reduces up to 159 lines of code of required manual inputs, at the cost of less than 40s of performance overheads. 
    more » « less