skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1919647

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Predicting future discontinuous phenomena that are unobservable from training data sets has long been a challenging problem in scientific machine learning. We introduce a novel paradigm to predict the emergence and evolution of various discontinuities of hyperbolic partial differential equations (PDEs) based on given training data over a short window with limited discontinuity information. Our method is inspired by the classical Roe solver [P. L. Roe, J Comput Phys., vol. 43, 1981], a basic tool for simulating various hyperbolic PDEs in computational physics. By carefully designing the computing primitives, the data flow, and the novel pseudoinverse processing module, we enable our data‐driven predictor to satisfy all the essential mathematical criteria of a Roe solver and hence deliver accurate predictions of hyperbolic PDEs. We demonstrate through various examples that our data‐driven Roe predictor outperforms original human‐designed Roe solver and deep neural networks with weak priors in terms of accuracy and robustness. 
    more » « less
  2. Abstract In this paper, a hybrid Lagrangian–Eulerian topology optimization (LETO) method is proposed to solve the elastic force equilibrium with the Material Point Method (MPM). LETO transfers density information from freely movable Lagrangian carrier particles to a fixed set of Eulerian quadrature points. This transfer is based on a smooth radial kernel involved in the compliance objective to avoid the artificial checkerboard pattern. The quadrature points act as MPM particles embedded in a lower‐resolution grid and enable a subcell multidensity resolution of intricate structures with a reduced computational cost. A quadrature‐level connectivity graph‐based method is adopted to avoid the artificial checkerboard issues commonly existing in multiresolution topology optimization methods. Numerical experiments are provided to demonstrate the efficacy of the proposed approach. 
    more » « less
  3. Free, publicly-accessible full text available December 11, 2025
  4. We propose a novel Particle Flow Map (PFM) method to enable accurate long-range advection for incompressible fluid simulation. The foundation of our method is the observation that a particle trajectory generated in a forward simulation naturally embodies a perfect flow map. Centered on this concept, we have developed an Eulerian-Lagrangian framework comprising four essential components: Lagrangian particles for a natural and precise representation of bidirectional flow maps; a dual-scale map representation to accommodate the mapping of various flow quantities; a particle-to-grid interpolation scheme for accurate quantity transfer from particles to grid nodes; and a hybrid impulse-based solver to enforce incompressibility on the grid. The efficacy of PFM has been demonstrated through various simulation scenarios, highlighting the evolution of complex vortical structures and the details of turbulent flows. Notably, compared to NFM, PFM reduces computing time by up to 49 times and memory consumption by up to 41%, while enhancing vorticity preservation as evidenced in various tests like leapfrog, vortex tube, and turbulent flow. 
    more » « less