skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1919753

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The motion of bubbles near walls is ubiquitous for cleaning purposes in natural and industrial systems. Shear stress induced by bubbles on the surface is used to remove particles or bacteria adhering to the surface. In this study, we investigate the cleaning effect of bubbles on a surface coated with a protein soil solution with and without the presence of an acoustic wave transducer at a single frequency. In addition, we test different drying times for the coated surfaces before conducting the cleaning tests. Our results show that the best bubble cleaning effect occurs for the shortest drying time of the coating and an acoustic wave of 100 Hz. 
    more » « less
  2. We experimentally investigate the interfacial instability that emerges when a water droplet is deposited on a bath of glycerol-water solution. Despite the absence of surface tension to stabilize short-wavelength undulations, we observe finite-size fingers that grow and pinch off from the drop. We show that the fingering patterns formed in the experiments resultes from a balance between the outward buoyancy effect and inward Marangoni flow. This induced Marangoni flow inhibits small perturbations and acts as an effective surface tension on the miscible interface of the spreading drop. To characterize the final size and shape of the drop, we perform systematic experiments by varying the drop volume and the glycerol-water volume fraction. In addition, we have developed scaling arguments for the drop’s final radius using key physical forces, and show that the final wavelength is inversely proportional to the Bond number. 
    more » « less
  3. In recent years, some of the most interesting discoveries in science and engineering emerged from interdisciplinary areas that defy the traditional classification. One recent and extensively studied example is the advent of optomechanics that explores the radiation pressure-induced nonlinearity in a solid micro-resonator. Instead of using a solid resonator, we studied a liquid droplet resonator in which optical pressure could actively interact with the fluid interface. The droplet resonator supported high-quality whispering gallery modes along its equatorial plane, which produced a radiation pressure that counterbalances the interfacial tension, resulting in a droplet with damped harmonic oscillation. A major goal of this study was to demonstrate that such a novel and all-liquid platform could lead to a single-photon-level nonlinearity at room temperature. If successful, such a highly nonlinear system may lead to new research paradigms in photonics, fluid mechanics, as well as quantum information science. 
    more » « less
  4. null (Ed.)
    The means by which aquatic animals such as freshwater snails collect food particles distributed on the water surface are of great interest for understanding life at the air–water interface. The apple snail Pomacea canaliculata stabilizes itself just below the air–water interface and manipulates its foot such that it forms a cone-shaped funnel into which an inhalant current is generated, thereby drawing food particles into the funnel to be ingested. We measured the velocity of this feeding current and tracked the trajectories of food particles around and on the snail. Our experiments indicated that the particles were collected via the free surface flow generated by the snail’s undulating foot. The findings were interpreted using a simple model based on lubrication theory, which considered several plausible mechanisms depending on the relative importance of hydrostatic pressure, capillary action and rhythmic surface undulation. 
    more » « less