skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1919847

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Adenosine monophosphate-activated kinase (AMPK) functions in a broad spectrum of cellular stress response pathways. Investigation of AMPK activity has been limited to whole-organism analyses in Caenorhabditis elegans which does not allow for observations of cellular heterogeneity, temporal dynamics, or correlation with physiological states in real time. We codon adapted the genetically-coded AMPK biosensor, called AMPKAR-EV, for use in C. elegans . We report heterogeneity of activation in different tissues (intestine, neurons, muscle) and test the biosensor in the context of two missense mutations affecting residues T243 and S244 on the AMPK α subunit, AAK-2, which are predicted regulatory sites. 
    more » « less
  2. Orcokinin neuropeptides are conserved among ecdysozoans, but their functions are incompletely understood. Here, we report a role for orcokinin neuropeptides in the regulation of sleep in the nematode Caenorhabditis elegans. The C. elegans orcokinin peptides, which are encoded by the nlp-14 and nlp-15 genes, are necessary and sufficient for quiescent behaviors during developmentally timed sleep (DTS) as well as during stress-induced sleep (SIS). The five orcokinin neuropeptides encoded by nlp-14 have distinct but overlapping functions in the regulation of movement and defecation quiescence during SIS. We suggest that orcokinins may regulate behavioral components of sleep-like states in nematodes and other ecdysozoans. 
    more » « less